13,587 research outputs found

    Freed-Witten anomaly in general flux compactification

    Full text link
    Turning on a NS-NS three-form flux in a compact space drives some D-branes to be either Freed-Witten anomalous or unstable to decay into fluxes by the appearance of instantonic branes. By applying T-duality on a toroidal compactification, the NS-flux is transformed into metric fluxes. We propose a T-dual version of the Atiyah-Hirzebruch Spectral Sequence upon which we describe the Freed-Witten anomaly and the brane-flux transition driven by NS and metric fluxes in a twisted torus. The required conditions to cancel the anomaly and the appearance of new instantonic branes are also described. In addition, we give an example in which all D6-branes wrapping Freed-Witten anomaly-free three-cycles in the twisted torus T^6/Z(2)XZ(2) are nevertheless unstable to be transformed into fluxes. Evenmore we find a topological transformation between RR, NS-NS and metric fluxes driven by a chain of instantonic branes.Comment: v3: Shortened version. Examples added. Main results unchange

    Consistency Problems for Jump-Diffusion Models

    Full text link
    In this paper consistency problems for multi-factor jump-diffusion models, where the jump parts follow multivariate point processes are examined. First the gap between jump-diffusion models and generalized Heath-Jarrow-Morton (HJM) models is bridged. By applying the drift condition for a generalized arbitrage-free HJM model, the consistency condition for jump-diffusion models is derived. Then we consider a case in which the forward rate curve has a separable structure, and obtain a specific version of the general consistency condition. In particular, a necessary and sufficient condition for a jump-diffusion model to be affine is provided. Finally the Nelson-Siegel type of forward curve structures is discussed. It is demonstrated that under regularity condition, there exists no jump-diffusion model consistent with the Nelson-Siegel curves.Comment: To appear in Applied Mathematical Financ
    corecore