523 research outputs found

    MHD Simulations of the ISM: The Importance of the Galactic Magnetic Field on the ISM "Phases"

    Full text link
    We have carried out 1.25 pc resolution MHD simulations of the ISM, on a Cartesian grid of 0(x,y)10 \leq (x,y) \leq 1 kpc size in the galactic plane and 10z10-10 \leq z \leq 10 kpc into the halo, thus being able to fully trace the time-dependent evolution of the galactic fountain. The simulations show that large scale gas streams emerge, driven by SN explosions, which are responsible for the formation and destruction of shocked compressed layers. The shocked gas can have densities as high as 800 cm3^{-3} and lifetimes up to 15 Myr. The cold gas is distributed into filaments which tend to show a preferred orientation due to the anisotropy of the flow induced by the galactic magnetic field. Ram pressure dominates the flow in the unstable branch 102<10^{2}<T103.9\leq 10^{3.9} K, while for T100\leq 100 K (stable branch) magnetic pressure takes over. Near supernovae thermal and ram pressures determine the dynamics of the flow. Up to 80% of the mass in the disk is concentrated in the thermally unstable regime 102<10^{2}<T103.9\leq 10^{3.9} K with 30\sim30% of the disk mass enclosed in the T103\leq 10^{3} K gas. The hot gas in contrast is controlled by the thermal pressure, since magnetic field lines are swept towards the dense compressed walls.Comment: 8 pages, 8 figures (in jpeg format) that include 2 simulations images and 6 plots. Paper accepted by the referee for publication in the proceedings of ``Magnetic fields and star formation: theory versus observations'', kluwe

    ISM Simulations: An Overview of Models

    Get PDF
    Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.Comment: Overview paper (3 pages) presented by M. Avillez at the Special Session "Modern views of the interstellar medium", XXVIIIth IAU General Assembly, August 27-30, 2012, Beijing. Chin

    The gradient of diffuse gamma-ray emission in the Galaxy

    Full text link
    We show that the well-known discrepancy between the radial dependence of the Galactic cosmic ray (CR) nucleon distribution, as inferred most recently from EGRET observations of diffuse gamma-rays above 100 MeV, and of the most likely CR source distribution (supernova remnants, pulsars) can be explained purely by PROPAGATION effects. Contrary to previous claims, we demonstrate that this is possible, if the dynamical coupling between the escaping CRs and thermal plasma is taken into account, and thus a self-consistent GALACTIC WIND calculation is carried out. Given a dependence of the CR source distribution on Galactocentric radius, r, our numerical wind solutions show that the CR outflow velocity, V(r,z) depends both on r, and on vertical distance, z, at reference level z_C. The latter is defined as the transition boundary from diffusion to advection dominated CR transport and is therefore also a function of r. In fact, the CR escape time averaged over particle energies decreases with increasing CR source strength. Such an increase is counteracted by a reduced average CR residence time in the gas disk. Therfore pronounced peaks in the radial source distribution result in mild radial gamma-ray gradients at GeV energies, as it has been observed. This effect is enhanced by anisotropic diffusion, assuming different radial and vertical diffusion coefficients. We have calculated 2D analytic solutions of the stationary diffusion-advection equation, including anisotropic diffusion, for a given CR source distribution and a realistic outflow velocity field V(r,z), inferred from self-consistent numerical Galactic Wind simulations. At TeV energies the gamma-rays from the sources are expected to dominate the observed "diffuse" flux from the disk. Its observation should allow an empirical test of the theory presented.Comment: 23 pages, 12 figures; accepted for publication in Astronomy and Astrophysics Main Journa

    The History and Future of the Local and Loop I Bubbles

    Get PDF
    The Local and Loop I superbubbles are the closest and best investigated supernova (SN) generated bubbles and serve as test laboratories for observations and theories of the interstellar medium. Since the morphology and dynamical evolution of bubbles depend on the ambient density and pressure distributions, a realistic modelling of the galactic environment is crucial for a detailed comparison with observations. We have performed 3D high resolution (down to 1.25 pc on a kpc-scale grid) hydrodynamic simulations of the Local Bubble (LB) and the neighbouring Loop I (L1) superbubble in a realistically evolving inhomogeneous background ISM, disturbed already by SN explosions at the Galactic rate for 200 Myr before the LB and L1 are generated. The LB is the result of 19 SNe occurring in a moving group, which passed through the present day local HI cavity. We can reproduce (i) the OVI column density in absorption within the LB in agreement with COPERNICUS and recent FUSE observations, giving N(OVI) <2 10^{13} cm^-2 and N(OVI)<7 10^{12} cm^-2, respectively, (ii) the observed sizes of the Local and Loop I superbubbles, (iii) the interaction shell between LB and L1, discovered with ROSAT, (iv) constrain the age of the LB to be 14.5+0.7/-0.4 Myr, (v) predict the merging of the two bubbles in about 3 Myr, when the interaction shell starts to fragment, (vi) the generation of blobs like the Local Cloud as a consequence of a dynamical instability. We find that evolving superbubbles strongly deviate from idealised self-similar solutions due to ambient pressure and density gradients, as well as due to turbulent mixing and mass loading. Hence, at later times the hot interior can break through the surrounding shell, which may also help to explain the puzzling energy "deficit" observed in LMC bubbles.Comment: Accepted for publication in Astronomy and Astrophysics Letters. The paper contains 5 pages and 11 figures. Fig. 1a replaced by correct figur

    Analytical and numerical studies of central galactic outflows powered by tidal disruption events -- a model for the Fermi bubbles?

    Full text link
    Capture and tidal disruption of stars by the supermassive black hole in the Galactic center (GC) should occur regularly. The energy released and dissipated by this processes will affect both the ambient environment of the GC and the Galactic halo. A single star of super-Eddington eruption generates a subsonic out ow with an energy release of more than 105210^{52} erg, which still is not high enough to push shock heated gas into the halo. Only routine tidal disruption of stars near the GC can provide enough cumulative energy to form and maintain large scale structures like the Fermi Bubbles. The average rate of disruption events is expected to be 10410^{-4} ~ 10510^{-5} yr1^{-1}, providing the average power of energy release from the GC into the halo of dW/dt ~ 3*1041^{41} erg/s, which is needed to support the Fermi Bubbles. The GC black hole is surrounded by molecular clouds in the disk, but their overall mass and filling factor is too low to stall the shocks from tidal disruption events significantly. The de facto continuous energy injection on timescales of Myr will lead to the propagation of strong shocks in a density stratified Galactic halo and thus create elongated bubble-like features, which are symmetric to the Galactic midplane.Comment: 11 pages, 5 figures. The title and abstract have been changed. Accepted by Astrophysical Journa

    Astrophysical bow shocks: An analytical solution for the hypersonic blunt body problem in the intergalactic medium

    Full text link
    Aims: Bow shock waves are a common feature of groups and clusters of galaxies since they are generated as a result of supersonic motion of galaxies through the intergalactic medium. The goal of this work is to present an analytical solution technique for such astrophysical hypersonic blunt body problems. Methods: A method, developed by Schneider (1968, JFM, 31, 397) in the context of aeronautics, allows calculation of the galaxy's shape as long as the shape of the bow shock wave is known (so-called inverse method). In contrast to other analytical models, the solution is valid in the whole flow region (from the stagnation point up to the bow shock wings) and in particular takes into account velocity gradients along the streamlines. We compare our analytical results with two-dimensional hydrodynamical simulations carried out with an extended version of the VH-1 hydrocode which is based on the piecewise parabolic method with a Lagrangian remap. Results: It is shown that the applied method accurately predicts the galaxy's shape and the fluid variables in the post-shock flow, thus saving a tremendous amount of computing time for future interpretations of similar objects. We also find that the method can be applied to arbitrary angles between the direction of the incoming flow and the axis of symmetry of the body. We emphasize that it is general enough to be applied to other astrophysical bow shocks, such as those on stellar and galactic scales.Comment: 11 pages, 7 figures, accepted for publication in A&
    corecore