3,998 research outputs found

    Spontaneous Magnetization in the Disorder dominated Phase of the Twodimensional Random Bond Ising Model

    Full text link
    The selfconsistent approach to the 2D Ising Model with quenched random bonds is extended to the full lattice theory of four real fermions. The additional degrees of freedom, neglected in the renormalization-group theory, lead to a new phase between the ferromagnetic and the paramagnetic phase. The disorder averaged spin-spin correlation function decays exponentially with distance. The corresponding correlation length is 1/η21/\eta^2, where η\eta denotes the order parameter of the new phase introduced by Ziegler.Comment: 18 pages,plainTEX,TKM-74-9

    Conductivity of a quasiperiodic system in two and three dimensions

    Full text link
    A generalization of the Aubry-Andre model in two and three dimensions is introduced which allows for quasiperiodic hopping terms in addition to the quasiperiodic site potentials. This corresponds to an array of interstitial impurities within the periodic host crystal. The resulting model is exactly solvable and I compute the density of states and the ac-conductivity. There is no mobility edge as in completely disordered systems but the regular ac-conductivity and the strongly reduced Drude weight indicate a precursor of the Anderson transition as the Fermi energy goes from the center to the band edges.Comment: 4 pages,6 figures, references adde

    On the Spectrum of the XXZ-chain at roots of unity

    Full text link
    In a recent paper (cond-mat/0009279), Fabricius and McCoy studied the spectrum of the spin 1/2 XXZ-model at Delta = (q+q^{-1})/2 and q^{2N}=1 for integer N >1. They found a certain pattern of degeneracies and linked it to the sl(2)-loop symmetry present in the commensurable spin sector (N divides S^z). We show that the degeneracies are due to zero-energy, transparent excitations, the cyclic bound states. These exist both in commensurable and incommensurable sectors, indicating a symmetry, of which sl(2)-loop is a partial manifestation. Our approach treats both sectors on even footing and yields an analytical expression for the degeneracies in the case N = 3.Comment: 27 page

    Large inverse tunneling magnetoresistance in Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al/MgO/CoFe magnetic tunnel junctions

    Full text link
    Magnetic tunnel junctions with the layer sequence Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al/MgO/CoFe were fabricated by magnetron sputtering at room temperature (RT). The samples exhibit a large inverse tunneling magnetoresistance (TMR) effect of up to -66% at RT. The largest value of -84% at 20 K reflects a rather weak influence of temperature. The dependence on the voltage drop shows an unusual behavior with two almost symmetric peaks at ±600\pm600 mV with large inverse TMR ratios and small positive values around zero bias

    Structural and magneto-transport characterization of Co_2Cr_xFe_(1-x)Al Heusler alloy films

    Full text link
    We investigate the structure and magneto-transport properties of thin films of the Co_2Cr_xFe_(1-x)Al full-Heusler compound, which is predicted to be a half-metal by first-principles theoretical calculations. Thin films are deposited by magnetron sputtering at room temperature on various substrates in order to tune the growth from polycrystalline on thermally oxidized Si substrates to highly textured and even epitaxial on MgO(001) substrates, respectively. Our Heusler films are magnetically very soft and ferromagnetic with Curie temperatures up to 630 K. The total magnetic moment is reduced compared to the theoretical bulk value, but still comparable to values reported for films grown at elevated temperature. Polycrystalline Heusler films combined with MgO barriers are incorporated into magnetic tunnel junctions and yield 37% magnetoresistance at room temperature

    Run-time Spatial Mapping of Streaming Applications to Heterogeneous Multi-Processor Systems

    Get PDF
    In this paper, we define the problem of spatial mapping. We present reasons why performing spatial mappings at run-time is both necessary and desirable. We propose what is—to our knowledge—the first attempt at a formal description of spatial mappings for the embedded real-time streaming application domain. Thereby, we introduce criteria for a qualitative comparison of these spatial mappings. As an illustration of how our formalization relates to practice, we relate our own spatial mapping algorithm to the formal model
    corecore