17 research outputs found
PdO x /Pd at Work in a Model Three-Way Catalyst for Methane Abatement Monitored by Operando XANES
Effect of periodic lean/rich switch on methane conversion over a Ce-Zr promoted Pd-Rh/Al2O3 catalyst in the exhausts of natural gas vehicles
The behavior of a commercial Ce–Zr promoted Pd-Rh/Al2O3 catalyst for the abatement of methane from the exhausts of natural gas vehicles (NGVs) is studied in presence of large amounts of water under both stationary conditions and by periodically switching from lean to rich feed. Under stationary conditions with both stoichiometric (λ = 1.00) and lean (λ = 1.02) feed catalyst deactivation is observed after prolonged exposure to the reaction mixture. Periodic rich pulses in a constant lean feed gas result in the stabilization of catalytic performances.A higher methane conversion than those obtained with stoichiometric and lean feed mixtures is observed under rich conditions, during an experiment carried out by performing lean pulses (λ = 1.02) in a constant rich feed gas (λ = 0.98). The analysis of reactants conversion and products distribution suggests that different chemistries are involved under lean and rich conditions. Only reactions of complete oxidation of H2, CO, CH4 and NO occur under excess of oxygen, whereas under rich conditions NO reduction, CH4 steam reforming and water gas shift also occur.The effect of symmetric oscillation of the exhausts composition around stoichiometry is also addressed by periodically switching from slightly rich to slightly lean composition with different oscillation amplitudes (Δλ = \ub10.01, \ub10.02 and \ub10.03). Higher and more stable methane conversion performances are obtained than those observed under constant λ operations. The presence of a more active PdO/Pd0 state is suggested to explain the enhancement of catalytic performances
Enhanced Methane Conversion Under Periodic Operation Over a Pd/Rh Based TWC in the Exhausts from NGVs
The enhancement of methane oxidation performances under periodic operation over a commercial Pd–Rh based three way catalyst (TWC) is investigated at different temperatures. Results confirm that under conditions with periodic oscillating feed around stoichiometry (λ = 1 ± 0.02), higher and more stable CH4 conversion are obtained than under conditions with constant stoichiometric feed. In particular higher CH4 conversion is obtained in the rich part of the cycle than in the lean one, the difference being more pronounced at high temperature. A narrow turning point for the TWC activity is finally observed under slightly rich conditions, which is characterised by a marked increase of CH4 conversion, paralleled by total consumption of O2 and NO and formation of small amounts of CO, H2 and NH3. Results suggest that the oxidation state of palladium plays a key role in the observed enhancement of catalyst performances
Influence of the Substrate Properties on the Performances of NH3-SCR Monolithic Catalysts fort the Aftertreatment of Diesel Exhaust: An Experimental and Modeling Study
The effects of structural and geometrical characteristics of wash-coated monolith catalysts on the NO-NO2/NH3 selective catalytic reduction (SCR) activity were experimentally investigated over the same Cu-exchanged zeolite system coated onto honeycomb cordierite substrates with different cell densities, lengths, washcoat loads, and channel shapes. A stacked configuration was also tested. Contrary to previous reports, it was found that both interphase and intraphase diffusional limitations appreciably affected the deNOx efficiency at intermediate to high temperatures, whereas entrance effects did not play a noticeable role in enhancing the NOx conversion. A two-phase 1D+1D dynamic mathematical model of SCR monolithic converters, which explicitly accounts for both gas/solid and intraporous mass-transfer resistances, successfully predicted all of the observed effects using a single set of rate parameters estimated from intrinsic kinetic runs performed over the same catalyst in powdered form, under diffusion-free conditions
Role of intra- and inter-phase duffusional limitations on the performance of NH3-SCR monolithic catalysts for the aftertreatment of Diesel exhaust
Phlebotomine sand flies and leishmania species in a focus of cutaneous leishmaniasis in Algeria
Cutaneous leishmaniasis is a disease caused by various Leishmania spp., which are transmitted by phlebotomine sand flies. Algeria is one of the most affected countries, with thousands of cutaneous leishmaniasis cases registered every year. From March to November of 2016 and 2017, sand flies were collected in 12 municipalities in Setif province, North-Eastern Algeria. Sand flies were identified and females were tested by PCR for detecting Leishmania DNA. Additionally, cutaneous leishmaniasis cases notified during the study period were analysed. Out of 1804 sand flies collected, 1737 were identified as belonging to seven species, with Phlebotomus perniciosus (76.2%), Ph. papatasi (16.7%) and Ph. sergenti (5.0%) being the most common species, representing together 97.9% of the collected specimens. The remaining specimens were identified as Sergentomyia minuta, Se. fallax, Ph. longicuspis and Ph. perfiliewi. The number of sand flies collected monthly was positively correlated with temperature. Out of 804 females tested, nine Ph. perniciosus (1.1%) scored positive for Leishmania infantum (n = 5), L. major (n = 3) and L. tropica (n = 1), respectively. During the study period, 34 cutaneous leishmaniasis cases were notified in Setif, of which 58.8% were patients residing in two urban and peri-urban municipalities and 41.2% in rural areas. The finding of Ph. perniciosus as the most abundant species in Setif suggests that this sand fly may be adapted to different biotopes in the North-East region of Algeria. The detection of different Leishmania spp. in Ph. perniciosus suggests a complex epidemiological picture of cutaneous leishmaniasis in Setif, with the involvement of different etiological agents and possibly with different reservoir hosts and vectors
