2,767 research outputs found

    Exact and Truncated Dynamics in Nonequilibrium Field Theory

    Get PDF
    Nonperturbative dynamics of quantum fields out of equilibrium is often described by the time evolution of a hierarchy of correlation functions, using approximation methods such as Hartree, large N, and nPI-effective action techniques. These truncation schemes can be implemented equally well in a classical statistical system, where results can be tested by comparison with the complete nonlinear evolution obtained by numerical methods. For a 1+1 dimensional scalar field we find that the early-time behaviour is reproduced qualitatively by the Hartree dynamics. The inclusion of direct scattering improves this to the quantitative level. We show that the emergence of nonthermal temperature profiles at intermediate times can be understood in terms of the fixed points of the evolution equations in the Hartree approximation. The form of the profile depends explicitly on the initial ensemble. While the truncated evolution equations do not seem to be able to get away from the fixed point, the full nonlinear evolution shows thermalization with a (surprisingly) slow relaxation.Comment: 30 pages with 12 eps figures, minor changes; to appear in Phys.Rev.

    Time evolution of correlation functions and thermalization

    Full text link
    We investigate the time evolution of a classical ensemble of isolated periodic chains of O(N)-symmetric anharmonic oscillators. Our method is based on an exact evolution equation for the time dependence of correlation functions. We discuss its solutions in an approximation which retains all contributions in next-to-leading order in a 1/N expansion and preserves time reflection symmetry. We observe effective irreversibility and approximate thermalization. At large time the system approaches stationary solutions in the vicinity of, but not identical to, thermal equilibrium. The ensemble therefore retains some memory of the initial condition beyond the conserved total energy. Such a behavior with incomplete thermalization is referred to as "mesoscopic dynamics". It is expected for systems in a small volume. Surprisingly, we find that the nonthermal asymptotic stationary solutions do not change for large volume. This raises questions on Boltzmann's conjecture that macroscopic isolated systems thermalize.Comment: 40 pages, 9 figure

    Exact Flow Equations and the U(1)-Problem

    Get PDF
    The effective action of a SU(N)-gauge theory coupled to fermions is evaluated at a large infrared cut-off scale k within the path integral approach. The gauge field measure includes topologically non-trivial configurations (instantons). Due to the explicit infrared regularisation there are no gauge field zero modes. The Dirac operator of instanton configurations shows a zero mode even after the infrared regularisation, which leads to U_A(1)-violating terms in the effective action. These terms are calculated in the limit of large scales k.Comment: 22 pages, latex, no figures, with stylistic changes and some arguments streamlined, typos corrected, References added, to appear in Phys. Rev.

    Effective Average Action in N=1 Super-Yang-Mills Theory

    Full text link
    For N=1 Super-Yang-Mills theory we generalize the effective average action Gamma_k in a manifest supersymmetric way using the superspace formalism. The exact evolution equation for Gamma_k is derived and, introducing as an application a simple truncation, the standard one-loop beta-function of N=1 SYM theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear in Phys. Rev.

    Multivalued Fields on the Complex Plane and Conformal Field Theories

    Full text link
    In this paper a class of conformal field theories with nonabelian and discrete group of symmetry is investigated. These theories are realized in terms of free scalar fields starting from the simple bcb-c systems and scalar fields on algebraic curves. The Knizhnik-Zamolodchikov equations for the conformal blocks can be explicitly solved. Besides of the fact that one obtains in this way an entire class of theories in which the operators obey a nonstandard statistics, these systems are interesting in exploring the connection between statistics and curved space-times, at least in the two dimensional case.Comment: (revised version), 30 pages + one figure (not included), (requires harvmac.tex), LMU-TPW 92-1

    Winding number transitions at finite temperature in the Abelian-Higgs model

    Get PDF
    Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the sphaleron transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.Comment: final version, to appear in J. Phys.

    Deformed dimensional regularization for odd (and even) dimensional theories

    Full text link
    I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments, IJMP

    Exact Ward-Takahashi identity for the lattice N=1 Wess-Zumino model

    Full text link
    The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson relation is invariant under a generalized supersymmetry transformation which is determined by an iterative procedure in the coupling constant. By studying the associated Ward-Takahashi identity up to order g2g^2 we show that this lattice supersymmetry automatically leads to restoration of continuum supersymmetry without fine tuning. In particular, the scalar and fermion renormalization wave functions coincide.Comment: 6 pages, 5 figures, Talk given at QG05, Cala Gonone, Sardinia, Italy. 12-16 September 200

    Large N Quantum Time Evolution Beyond Leading Order

    Get PDF
    For quantum theories with a classical limit (which includes the large N limits of typical field theories), we derive a hierarchy of evolution equations for equal time correlators which systematically incorporate corrections to the limiting classical evolution. Explicit expressions are given for next-to-leading order, and next-to-next-to-leading order time evolution. The large N limit of N-component vector models, and the usual semiclassical limit of point particle quantum mechanics are used as concrete examples. Our formulation directly exploits the appropriate group structure which underlies the construction of suitable coherent states and generates the classical phase space. We discuss the growth of truncation error with time, and argue that truncations of the large-N evolution equations are generically expected to be useful only for times short compared to a ``decoherence'' time which scales like N^{1/2}.Comment: 36 pages, 2 eps figures, latex, uses revtex, epsfig, float
    corecore