2,160 research outputs found

    Development of dry coal feeders

    Get PDF
    Design and fabrication of equipment of feed coal into pressurized environments were investigated. Concepts were selected based on feeder system performance and economic projections. These systems include: two approaches using rotating components, a gas or steam driven ejector, and a modified standpipe feeder concept. Results of development testing of critical components, design procedures, and performance prediction techniques are reviewed

    Spin-wave instabilities in spin-transfer-driven magnetization dynamics

    Full text link
    We study the stability of magnetization precessions induced in spin-transfer devices by the injection of spin-polarized electric currents. Instability conditions are derived by introducing a generalized, far-from-equilibrium interpretation of spin-waves. It is shown that instabilities are generated by distinct groups of magnetostatically coupled spin-waves. Stability diagrams are constructed as a function of external magnetic field and injected spin-polarized current. These diagrams show that applying larger fields and currents has a stabilizing effect on magnetization precessions. Analytical results are compared with numerical simulations of spin-transfer-driven magnetization dynamics.Comment: 4 pages, 2 figure

    Change and Innovation in the Institutional Army from 1860–2020

    Get PDF
    This article showcases the understudied institutional Army, the generating force, as a critical prerequisite for overall strategic success. Competition, crisis, and conflict require more than the manned, trained, and equipped units that deploy. This article analyzes six case studies of institutional Army reforms over 160 years to examine adaptation in peace and war. The conclusions provide historical insights to inform current practices and fulfill the Army’s articulated 2022 Institutional Strategy

    Impurity assisted nanoscale localization of plasmonic excitations in graphene

    Full text link
    The plasmon modes of pristine and impurity doped graphene are calculated, using a real-space theory which determines the non-local dielectric response within the random phase approximation. A full diagonalization of the polarization operator is performed, allowing the extraction of all its poles. It is demonstrated how impurities induce the formation of localized modes which are absent in pristine graphene. The dependence of the spatial modulations over few lattice sites and frequencies of the localized plasmons on the electronic filling and impurity strength is discussed. Furthermore, it is shown that the chemical potential and impurity strength can be tuned to control target features of the localized modes. These predictions can be tested by scanning tunneling microscopy experiments.Comment: 5 pages, 4 figure

    Measurement of dynamic Stark polarizabilities by analyzing spectral lineshapes of forbidden transitions

    Full text link
    We present a measurement of the dynamic scalar and tensor polarizabilities of the excited state 3D1 in atomic ytterbium. The polarizabilities were measured by analyzing the spectral lineshape of the 408-nm 1S0->3D1 transition driven by a standing wave of resonant light in the presence of static electric and magnetic fields. Due to the interaction of atoms with the standing wave, the lineshape has a characteristic polarizability-dependent distortion. A theoretical model was used to simulate the lineshape and determine a combination of the polarizabilities of the ground and excited states by fitting the model to experimental data. This combination was measured with a 13% uncertainty, only 3% of which is due to uncertainty in the simulation and fitting procedure. The scalar and tensor polarizabilities of the state 3D1 were measured for the first time by comparing two different combinations of polarizabilities. We show that this technique can be applied to similar atomic systems.Comment: 13 pages, 7 figures, submitted to PR

    Attosecond tracking of light absorption and refraction in fullerenes

    Full text link
    The collective response of matter is ubiquitous and widely exploited, e.g. in plasmonic, optical and electronic devices. Here we trace on an attosecond time scale the birth of collective excitations in a finite system and find distinct new features in this regime. Combining quantum chemical computation with quantum kinetic methods we calculate the time-dependent light absorption and refraction in fullerene that serve as indicators for the emergence of collective modes. We explain the numerically calculated novel transient features by an analytical model and point out the relevance for ultra-fast photonic and electronic applications. A scheme is proposed to measure the predicted effects via the emergent attosecond metrology.Comment: 11 pages, 3 figures, accepted in Phys. Rev.

    Atom interferometry measurement of the electric polarizability of lithium

    Full text link
    Using an atom interferometer, we have measured the static electric polarizability of 7^7Li α=(24.33±0.16)×10−30\alpha =(24.33 \pm 0.16)\times10^{-30} m3^3 =164.19±1.08= 164.19\pm 1.08 atomic units with a 0.66% uncertainty. Our experiment, which is similar to an experiment done on sodium in 1995 by D. Pritchard and co-workers, consists in applying an electric field on one of the two interfering beams and measuring the resulting phase-shift. With respect to D. Pritchard's experiment, we have made several improvements which are described in detail in this paper: the capacitor design is such that the electric field can be calculated analytically; the phase sensitivity of our interferometer is substantially better, near 16 mrad/Hz\sqrt{Hz}; finally our interferometer is species selective it so that impurities present in our atomic beam (other alkali atoms or lithium dimers) do not perturb our measurement. The extreme sensitivity of atom interferometry is well illustrated by our experiment: our measurement amounts to measuring a slight increase Δv\Delta v of the atom velocity vv when it enters the electric field region and our present sensitivity is sufficient to detect a variation Δv/v≈6×10−13\Delta v/v \approx 6 \times 10^{-13}.Comment: 14 page

    In stage II/III lymph node positive breast cancer patients less than 55 years of age, keratin 8 expression in lymph node metastases but not in the primary tumor is an indicator of better survival

    Get PDF
    Axillary lymph node status is one of the most important prognostic variables for breast cancer (BC). To investigate and understand the clinical, histopathological and biological factors that affect prognosis in node positive young breast cancer patients, we compared the phenotype of 100 primary tumours with their corresponding loco- regional lymph node (LN) metastases using conventional immunohistochemistry (IHC) markers currently in use for molecular classification of breast cancer. By comparing the expression of ER, PR, HER-2, Ki67, K8, K5/6 and vimentin, we found that expression of HER-2, Ki67, K8 and vimentin is frequently lost in lymph node metastases. Between the primary tumour and corresponding lymph node metastases expression of keratins K8 and K5/6 significantly changed. Expression of K8 in lymph node metastases, but not in primary tumours, segregates patients in two sub-groups with different outcome. Survival of patients with K8 positive LN metastases at 5 years in comparison with patients with K8 negative LN metastases was 75% vs 48%, at 10 years 62% vs 22% and at 20 years 53% vs 14%(p<0.001). K8 immunostaining of tissue from the lymph node metastasis allows defining a sub-group of lymph node positive BC patients with a highly unfavourable outcome, for whom therapeutic options might have to be reconsidered

    State-insensitive trapping of Rb atoms: linearly versus circularly polarized lights

    Full text link
    We study the cancellation of differential ac Stark shifts in the 5s and 5p states of rubidium atom using the linearly and circularly polarized lights by calculating their dynamic polarizabilities. Matrix elements were calculated using a relativistic coupled-cluster method at the single, double and important valence triple excitations approximation including all possible non-linear correlation terms. Some of the important matrix elements were further optimized using the experimental results available for the lifetimes and static polarizabilities of atomic states. "Magic wavelengths" are determined from the differential Stark shifts and results for the linearly polarized light are compared with the previously available results. Possible scope of facilitating state-insensitive optical trapping schemes using the magic wavelengths for circularly polarized light are discussed. Using the optimized matrix elements, the lifetimes of the 4d and 6s states of this atom are ameliorated.Comment: 13 pages, 13 tables and 4 figure
    • 

    corecore