2,984 research outputs found

    Is There a Relationship between the Density of Primordial Black Holes in a Galaxy and the Rate of Cosmological Gamma-Ray Bursts?

    Full text link
    The rate of accretion of matter from a solar-type star onto a primordial black hole (PBH) that passes through it is calculated. The probability that a PBH is captured into an orbit around a star in a galaxy is found. The mean lifetime of the PBH in such an orbit and the rate of orbital captures of PBHs in the galaxy are calculated. It is shown that this rate does not depend on the mass of the PBH. This mechanism cannot make an appreciable contribution to the rate of observed gamma-ray bursts. The density of PBHs in the galaxy can reach a critical value - the density of the mass of dark matter in the galaxy.Comment: 7 page

    The stellar mass-accretion rate relation in T Tauri stars and brown dwarfs

    Full text link
    Recent observations show a strong correlation between stellar mass and accretion rate in young stellar and sub-stellar objects, with the scaling M˙acc∝M∗2\dot{M}_{acc} \propto M_*^2 holding over more than four orders of magnitude in accretion rate. We explore the consequences of this correlation in the context of disk evolution models. We note that such a correlation is not expected to arise from variations in disk angular momentum transport efficiency with stellar mass, and suggest that it may reflect a systematic trend in disk initial conditions. In this case we find that brown dwarf disks initially have rather larger radii than those around more massive objects. By considering disk evolution, and invoking a simple parametrization for a shut-off in accretion at the end of the disk lifetime, we show that such models predict that the scatter in the stellar mass-accretion rate relationship should increase with increasing stellar mass, in rough agreement with current observations.Comment: 4 pages, 2 figures. Accepted for publication in ApJ Letter

    Wiggles in the cosmic microwave background radiation: echoes from non-singular cyclic-inflation

    Get PDF
    In this paper we consider a unique model of inflation where the universe undergoes rapid asymmetric oscillations, each cycle lasting millions of Planck time. Over many-many cycles the space-time expands to mimic the standard inflationary scenario. Moreover, these rapid oscillations leave a distinctive periodic signature in ln(k) in the primordial power spectrum, where k denotes the comoving scale. The best fit parameters of the cyclic-inflation model provides a very good fit to the 7-year WMAP data.Comment: Computational details and a figure adde

    Extended radio emission in BL Lac objects - I: the images

    Get PDF
    We have observed 28 sources selected from the 1Jy sample of BL Lac objects (Stickel et al. 1991) with the Very Large Array (VLA) in A, B and D configurations at 1.36, 1.66 and 4.85 GHz, and/or with the Westerbork Synthesis Radio Telescope (WSRT) at 1.40 GHz. In this paper we present high sensitivity images at arcsecond resolution of the 18 objects showing extended structure in our images, and of another source from the FIRST (Faint Images of the Radio Sky at Twenty-cm) survey (Becker et al. 1995). In general our high sensitivity images reveal an amount of extended emission larger than previously reported. In some objects the luminosity of the extended structure is comparable with that of FR~II radio sources. A future paper will be devoted to the interpretation of these results.Comment: 12 pages, 35 figures, to appear on A&A Supp. Ser., postscript file with figures included available at http://www.ira.noto.cnr.it/staff/carlo/ds1030.ps.g

    Magnetically Accreting Isolated Old Neutron Stars

    Get PDF
    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~< 1e10 yr). The properties of MAGACS may be summarized thus: dipole magnetic fields of B~>1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic polar cap. We find no examples of MAGACs among previously observed source classes (anomalous X-ray pulsars, soft-gamma-ray repeaters or known IONS). However, MAGACs may be more prevelant in flux-limited X-ray catalogs than their gravitationally accreting counterparts.Comment: ApJ, accepte

    Solution generating theorems for perfect fluid spheres

    Get PDF
    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.Comment: 8 pages, no figures, to appear in the proceedings of the NEB XII Conference (Recent Developments in Gravity), 29 June - 2 July, 2006, Napflio, Greec

    The Gravitational and Electrostatic Fields Far from an Isolated Einstein-Maxwell Source

    Full text link
    The exterior solution for an arbitrary charged, massive source, is studied as a static deviation from the Reissner-Nordstr\o m metric. This is reduced to two coupled ordinary differential equations for the gravitational and electrostatic potential functions. The homogeneous equations are explicitly solved in the particular case q2=m2q^2=m^2, obtaining a multipole expansion with radial hypergeometric dependence for both potentials. In the limiting case of a neutral source, the equations are shown to coincide with recent results by Bondi and Rindler.Comment: 11 pages, revTe

    Using ordinary multiplication to do relativistic velocity addition

    Get PDF
    Relativistic addition of velocities in one dimension, though a mainstay of introductory physics, contributes much less physical insight than it could. For such calculations, we propose the use of velocity factors (two-way doppler factors). Velocities can easily, often by inspection, be turned into velocity factors, and vice versa. Velocity factors compose by ordinary multiplication. This simple device considerably extends the kinds of questions that can be asked and answered in an introductory course.Comment: 6 page

    Designing HMO, an Integrated Hardware Microcode Optimizer

    Get PDF
    This Paper Discusses an Algorithm for Optimizing the Density and Parallelism of Micro coded Routines in Micro programmable Machines. Besides the Algorithm itself, the Algorithm\u27s Uses, Design Integration Problems, Architectural Requirements, and Adaptability to Conventional Machine Characteristics Are Also Discussed and Analyzed. Even Though the Paper Proposes a Hardware Implementation of the Algorithm, the Algorithm is Viewed as an Integral Part of the Entire Microcode Generation and Usage Process, from Initial High-Level Input into a Software Microcode Compiler Down to Machine-Level Execution of the Resultant Microcode on the Host Machine. It is Believed that, by Removing Much of the Traditionally Time-Consuming and Machine-Dependent Microcode Optimization from the Software Portion of This Process, the Algorithm Can Improve the overall Process
    • 

    corecore