5,123 research outputs found
The Cop Number of the One-Cop-Moves Game on Planar Graphs
Cops and robbers is a vertex-pursuit game played on graphs. In the classical
cops-and-robbers game, a set of cops and a robber occupy the vertices of the
graph and move alternately along the graph's edges with perfect information
about each other's positions. If a cop eventually occupies the same vertex as
the robber, then the cops win; the robber wins if she can indefinitely evade
capture. Aigner and Frommer established that in every connected planar graph,
three cops are sufficient to capture a single robber. In this paper, we
consider a recently studied variant of the cops-and-robbers game, alternately
called the one-active-cop game, one-cop-moves game or the lazy-cops-and-robbers
game, where at most one cop can move during any round. We show that Aigner and
Frommer's result does not generalise to this game variant by constructing a
connected planar graph on which a robber can indefinitely evade three cops in
the one-cop-moves game. This answers a question recently raised by Sullivan,
Townsend and Werzanski.Comment: 32 page
Hyperopic Cops and Robbers
We introduce a new variant of the game of Cops and Robbers played on graphs,
where the robber is invisible unless outside the neighbor set of a cop. The
hyperopic cop number is the corresponding analogue of the cop number, and we
investigate bounds and other properties of this parameter. We characterize the
cop-win graphs for this variant, along with graphs with the largest possible
hyperopic cop number. We analyze the cases of graphs with diameter 2 or at
least 3, focusing on when the hyperopic cop number is at most one greater than
the cop number. We show that for planar graphs, as with the usual cop number,
the hyperopic cop number is at most 3. The hyperopic cop number is considered
for countable graphs, and it is shown that for connected chains of graphs, the
hyperopic cop density can be any real number in $[0,1/2].
Influence of temperature on the life-history parameters of the yellow grape-vine mite Eotetranychus carpini (Oudemans) (Acari : Tetranychidae)
Thermal Decays in a Hot Fermi Gas
We present a study of the decay of metastable states of a scalar field via
thermal activation, in the presence of a finite density of fermions. The
process we consider is the nucleation of ``{\it droplets}'' of true vacuum
inside the false one. We analyze a one-dimensional system of interacting bosons
and fermions, considering the latter at finite temperature and with a given
chemical potential. As a consequence of a non-equilibrium formalism previously
developed, we obtain time-dependent decay rates.Comment: 18 pages, REVTEX, 9 figures available upon reques
Atomically-thin quantum dots integrated with lithium niobate photonic chips
The electro-optic, acousto-optic and nonlinear properties of lithium niobate
make it a highly versatile material platform for integrated quantum photonic
circuits. A prerequisite for quantum technology applications is the ability to
efficiently integrate single photon sources, and to guide the generated photons
through ad-hoc circuits. Here we report the integration of quantum dots in
monolayer WSe2 into a Ti in-diffused lithium niobate directional coupler. We
investigate the coupling of individual quantum dots to the waveguide mode,
their spatial overlap, and the overall efficiency of the hybrid-integrated
photonic circuit
Adiabatic quantum algorithm for search engine ranking
We propose an adiabatic quantum algorithm for generating a quantum pure state
encoding of the PageRank vector, the most widely used tool in ranking the
relative importance of internet pages. We present extensive numerical
simulations which provide evidence that this algorithm can prepare the quantum
PageRank state in a time which, on average, scales polylogarithmically in the
number of webpages. We argue that the main topological feature of the
underlying web graph allowing for such a scaling is the out-degree
distribution. The top ranked entries of the quantum PageRank state
can then be estimated with a polynomial quantum speedup. Moreover, the quantum
PageRank state can be used in "q-sampling" protocols for testing properties of
distributions, which require exponentially fewer measurements than all
classical schemes designed for the same task. This can be used to decide
whether to run a classical update of the PageRank.Comment: 7 pages, 5 figures; closer to published versio
Polarons as Nucleation Droplets in Non-Degenerate Polymers
We present a study of the nucleation mechanism that allows the decay of the
metastable phase (trans-cisoid) to the stable phase
(cis-transoid) in quasi one-dimensional non-degenerate polymers within the
continuum electron-phonon model. The electron-phonon configurations that lead
to the decay, i.e. the critical droplets (or transition state), are identified
as polarons of the metastable phase. We obtain an estimate for the decay rate
via thermal activation within a range of parameters consistent with
experimental values for the gap of the cis-configuration. It is pointed out
that, upon doping, the activation barriers of the excited states are quite
smaller and the decay rate is greatly enhanced. Typical activation energies for
electron or hole polarons are eV and the typical size for a
critical droplet (polaron) is about . Decay via quantum nucleation is
also studied and it is found that the crossover temperature between quantum
nucleation and thermal activation is of order . Metastable
configurations of non-degenerate polymers may provide examples for mesoscopic
quantum tunneling.Comment: REVTEX 3.0, 28 PAGES, 3 FIGURES AVAILABLE UPON REQUEST, PITT 94-0
- …
