1,467 research outputs found
Nonlinear resonance absorption in laser-cluster interaction
Rare gas or metal clusters are known to absorb laser energy very efficiently.
Upon cluster expansion the Mie plasma frequency may become equal to the laser
frequency. This linear resonance has been well studied both experimentally and
theoretically employing pump probe schemes. In this work we focus on the
few-cycle regime or the early stage of the cluster dynamics where linear
resonance is not met but nevertheless efficient absorption of laser energy
persists. By retrieving time-dependent oscillator frequencies from
particle-in-cell simulation results, we show that nonlinear resonance is the
dominant mechanism behind outer ionization and energy absorption in near
infrared laser-driven clusters.Comment: 4 pages, 4 figures, REVTeX, minor modifications according to referee
comments, accepted for publication in Phys. Rev. Let
Power loss in open cavity diodes and a modified Child Langmuir Law
Diodes used in most high power devices are inherently open. It is shown that
under such circumstances, there is a loss of electromagnetic radiation leading
to a lower critical current as compared to closed diodes. The power loss can be
incorporated in the standard Child-Langmuir framework by introducing an
effective potential. The modified Child-Langmuir law can be used to predict the
maximum power loss for a given plate separation and potential difference as
well as the maximum transmitted current for this power loss. The effectiveness
of the theory is tested numerically.Comment: revtex4, 11 figure
Collisionless energy absorption in the short-pulse intense laser-cluster interaction
In a previous Letter [Phys. Rev. Lett. 96, 123401 (2006)] we have shown by
means of three-dimensional particle-in-cell simulations and a simple
rigid-sphere model that nonlinear resonance absorption is the dominant
collisionless absorption mechanism in the intense, short-pulse laser cluster
interaction. In this paper we present a more detailed account of the matter. In
particular we show that the absorption efficiency is almost independent of the
laser polarization. In the rigid-sphere model, the absorbed energy increases by
many orders of magnitude at a certain threshold laser intensity. The
particle-in-cell results display maximum fractional absorption around the same
intensity. We calculate the threshold intensity and show that it is
underestimated by the common over-barrier ionization estimate.Comment: 12 pages, 13 figures, RevTeX
The effect of initial conditions on the electromagnetic radiation generation in type III solar radio bursts
Copyright 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Physics of Plasmas 20, 062903 (2013) and may be found at .Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations no further interaction of the electron beam with the background plasma could be observed
Particle Energization in an Expanding Magnetized Relativistic Plasma
Using a 2-1/2-dimensional particle-in-cell (PIC) code to simulate the
relativistic expansion of a magnetized collisionless plasma into a vacuum, we
report a new mechanism in which the magnetic energy is efficiently converted
into the directed kinetic energy of a small fraction of surface particles. We
study this mechanism for both electron-positron and electron-ion (mi/me=100, me
is the electron rest mass) plasmas. For the electron-positron case the pairs
can be accelerated to ultra-relativistic energies. For electron-ion plasmas
most of the energy gain goes to the ions.Comment: 7 pages text plus 5 figures, accepted for publication by Physical
Review Letter
An alternative to the plasma emission model: Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts
1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to
model EM wave emission generation in the context of solar type III radio
bursts. The model studies generation of EM waves by a super-thermal, hot beam
of electrons injected into a plasma thread that contains uniform longitudinal
magnetic field and a parabolic density gradient. In effect, a single magnetic
line connecting Sun to earth is considered, for which several cases are
studied. (i) We find that the physical system without a beam is stable and only
low amplitude level EM drift waves (noise) are excited. (ii) The beam injection
direction is controlled by setting either longitudinal or oblique electron
initial drift speed, i.e. by setting the beam pitch angle. In the case of zero
pitch angle, the beam excites only electrostatic, standing waves, oscillating
at plasma frequency, in the beam injection spatial location, and only low level
EM drift wave noise is also generated. (iii) In the case of oblique beam pitch
angles, again electrostatic waves with same properties are excited. However,
now the beam also generates EM waves with the properties commensurate to type
III radio bursts. The latter is evidenced by the wavelet analysis of transverse
electric field component, which shows that as the beam moves to the regions of
lower density, frequency of the EM waves drops accordingly. (iv) When the
density gradient is removed, electron beam with an oblique pitch angle still
generates the EM radiation. However, in the latter case no frequency decrease
is seen. Within the limitations of the model, the study presents the first
attempt to produce simulated dynamical spectrum of type III radio bursts in
fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle
(non-gyrotropic) electron beam, that is an alternative to the plasma emission
classical mechanism.Comment: Physics of Plasmas, in press, May 2011 issue (final accepted version
Modeling of chemical processes in the low pressure capacitive RF discharges in a mixture of Ar/C2H2
We study the properties of a capacitive 13.56 MHz discharge properties with a
mixture of Ar/C2H2 taking into account the plasmochemistry and growth of heavy
hydrocarbons. A hybrid model was developed to combine the kinetic description
for electron motion and the fluid approach for negative and positive ions
transport and plasmochemical processes. A significant change of plasma
parameters related to injection of 5.8% portion of acetylene in argon was
observed and analyzed. We found that the electronegativity of the mixture is
about 30%. The densities of negatively and positively charged heavy
hydrocarbons are sufficiently large to be precursors for the formation of
nanoparticles in the discharge volume.Comment: 11 pages, 14 figure
Kinetic modelling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations
A kinetic approach for the evolution of ultracold neutral plasmas including
interionic correlations and the treatment of ionization/excitation and
recombination/deexcitation by rate equations is described in detail. To assess
the reliability of the approximations inherent in the kinetic model, we have
developed a hybrid molecular dynamics method. Comparison of the results reveals
that the kinetic model describes the atomic and ionic observables of the
ultracold plasma surprisingly well, confirming our earlier findings concerning
the role of ion-ion correlations [Phys. Rev. A {\bf 68}, 010703]. In addition,
the molecular dynamics approach allows one to study the relaxation of the ionic
plasma component towards thermodynamical equilibrium
New combined PIC-MCC approach for fast simulation of a radio frequency discharge at low gas pressure
A new combined PIC-MCC approach is developed for accurate and fast simulation
of a radio frequency discharge at low gas pressure and high density of plasma.
Test calculations of transition between different modes of electron heating in
a ccrf discharge in helium and argon show a good agreement with experimental
data.
We demonstrate high efficiency of the combined PIC-MCC algorithm, especially
for the collisionless regime of electron heating.Comment: 6 paged, 8 figure
'A Monstrous Failure of Justice'?:Guantanamo Bay and National Security Challenges to Fundamental Human Rights
This article considers challenges to the existing international human rights regime in the post-9/11 era. It uses an interdisciplinary approach that brings together issues of politics and law by focussing on international legal provisions and setting them into the context of International Relations theory. The article examines the establishment of Guantanamo Bay as a detention centre for suspected terrorists captured in the 'war on terror' and focuses on violations of international human rights and humanitarian law in the name of national security. This article demonstrates that the wrangling over Guantanamo Bay is an important illustration of the complex interaction between interests and norms as well as law and politics in US policy making. The starting point is that politics and law are linked and cannot be seen in isolation from each other; the question that then arises is what kind of politics law can maintain. International Politics (2010) 47, 680-697. doi: 10.1057/ip.2010.25</p
- …
