14 research outputs found

    Corrosion, tribology and tribocorrosion research in biomedical implants : progressive trend in the published literature

    Get PDF
    There has been significant progress in implant research during last the 10 years (2005–2015). The increase in the elderly population coupled with a lack of proper physical activity is a potential cause for the sudden increment in implant usage. Implant life and performance are influenced by several parameters; however, literature showed that corrosion, tribology, and tribocorrosion processes of implant materials are main concern and driving mechanisms in the degradation processes. There is currently a large need for research in this area. Furthermore, there has been no recent systematic literature review to analyze the progress of research and published work in this area. The objective of this work is to provide a trend in the published articles in the area of corrosion, tribology, and tribocorrosion during last century, with emphasis on the progress over the last 10 years. The paper also tries to report the current state-of-the-art research in the area of corrosion, tribology, and tribocorrosion research in bio-implants based on number of published articles. The reviews demonstrate that during the last 10 years, there has been significant progress in implant research, particularly in the tribocorrosion area, however, significantly lower than tribology and corrosion research

    Morphometry and meristics of longnose seahorse, Hippocampus trimaculatus (Actinopterygii: Syngnathidae), from Kerala, south-west coast of India

    No full text
    Background. The longnose seahorse, Hippocampus trimaculatus Leach, 1814, included in the Red List of Threatened Species is the most common and least studied seahorse species along the south-west coast of India. Practically no information is available on numerical taxonomy and sexual dimorphism of H. trimaculatus from India. The purpose of the reported study is to describe the morphometry and meristics of H. trimaculatus occurring along Kerala, south-west coast of India. Materials and methods. A total of 45 specimens of H. trimaculatus, represented by 25 males and 20 females, obtained from trawl by-catch, were studied following standard morphometric and meristics procedures. Statistical data analyses include Student’s t-test, Mann–Whitney U test, and Principal Component Analysis to describe the sexual dimorphism of the species. Results. Male H. trimaculatus are longer than females, with relatively longer tails. The mean values of head depth, snout depth, trunk depth, trunk width, dorsal fin base length, and pectoral fin base length are higher in males, while head length, snout length, coronet height, and trunk length are higher in females. Trunk length and snout depth are the two principal components that determine sexual dimorphism in H. trimaculatus. Conclusion. The numerical taxonomy of H. trimaculatus from Indian coastal waters is reported for the first time. The study shows that sexual dimorphism in H. trimaculatus is reflected in differing morphometric characters between the sexes

    <em>In Vitro</em>, <em>In Vivo</em> and <em>Ex Vivo</em> Models for Toxicity Evaluation of Nanoparticles: Advantages and Disadvantages

    No full text
    This chapter focus on existing model systems used to evaluate the toxicity of nanoparticles. We will be discussing monolayer and 3D cell based toxicity models, In vivo models like rodents and zebrafish systems. A focus will also be given on ex vivo models like chick embryos. Each toxicity model system will be discussed with its advantages and limitations. The chapter will provide critical information to students and researchers studying nanotechnology about the potential systems to check the toxicity of the nanoparticles developed in the laboratory. This can be used as a quick guide to use a model system to check toxicity based on the different type of particle with informed decisions based on its advantages and disadvantages

    Parameters and characteristics governing cellular internalization and trans-barrier trafficking of&nbsp;nanostructures

    No full text
    Karmani Murugan, Yahya E Choonara, Pradeep Kumar, Divya Bijukumar, Lisa C du Toit, Viness Pillay Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa Abstract: Cellular internalization and trans-barrier transport of nanoparticles can be manipulated on the basis of the physicochemical and mechanical characteristics of nanoparticles. Research has shown that these factors significantly influence the uptake of nanoparticles. Dictating these characteristics allows for the control of the rate and extent of cellular uptake, as well as delivering the drug-loaded nanosystem intra-cellularly, which is imperative for drugs that require a specific cellular level to exert their effects. Additionally, physicochemical characteristics of the nanoparticles should be optimal for the nanosystem to bypass the natural restricting phenomena of the body and act therapeutically at the targeted site. The factors at the focal point of emerging smart nanomedicines include nanoparticle size, surface charge, shape, hydrophobicity, surface chemistry, and even protein and ligand conjugates. Hence, this review discusses the mechanism of internalization of nanoparticles and ideal nanoparticle characteristics that allow them to evade the biological barriers in order to achieve optimal cellular uptake in different organ systems. Identifying these parameters assists with the progression of nanomedicine as an outstanding vector of pharmaceuticals. Keywords: nanoparticles, transport mechanisms, cellular uptake, size, shape, charg

    Corrosion behavior of selective laser melting (SLM) manufactured Ti6Al4V alloy in saline and BCS solution

    No full text
    The frequency of surgeries involving the use of metal implants in orthopedic medicine to replace degenerative or fractured joints is increasing, and it is therefore important to optimize the lifespan and quality of these implants. Advances in additive manufacturing (AM), or 3D printing, are creating new opportunities to personalize implants in ways that reduce mechanical stress at the joint implant interface and improve bone ingrowth and implant stability; however, it is not well understood if and to what degree the AM process alters the corrosion behavior of the materials it produces. In this study, six Ti6Al4V prints manufactured via a selective laser melting (SLM) method were examined regarding their corrosion behavior in both saline and bovine calf serum (BCS) solutions. Ecorr and Icorr values were comparable between the CM-Ti6Al4V control and SLM-EDM surfaces; however, SLM surfaces were found to have more narrow passivation behavior evidenced by significant decreases in Epass values relative to CM-Ti6Al4V. We believe this is a consequence of microstructural differences between CM-Ti6Al4V and SLM-Ti6Al4V. Specifically, the SLM-Ti6Al4V demonstrated a dominant α′ martensitic microstructure and decreased vanadium-rich β-phase. BCS solution had a detrimental effect on potential parameters, Ecorr and OCP, decreasing these values relative to their saline counterparts. Increased surface roughness of the SLM-printed surface seemed to amplify the effects of the BCS solution. Furthermore, modest decreases in Epass and Ipass were observed in BCS solution, suggesting that the presence of protein may also interfere with passivation behavior. These findings have implications for how SLM-Ti6Al4V implants will perform in vivo and could possibly influence implant longevity and performance

    Synthesis and Evaluation of a Sodium Alginate-4-Aminosalicylic Acid Based Microporous Hydrogel for Potential Viscosupplementation for Joint Injuries and Arthritis-Induced Conditions

    No full text
    A microporous hydrogel was developed using sodium alginate (alg) and 4-aminosalicylic acid (4-ASA). The synthesized hydrogel was characterized using various analytical techniques such as Fourier transform infrared spectroscopy (FTIR), Carbon-13 nuclear magnetic resonance (13C-NMR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). Additonal carboxyl and hydroxyl functional groups of 4-ASA provided significant lubrication and stress-triggered sol-gel transition to the conjugated hydrogel. In addition, cytotoxicity analysis was undertaken on the conjugated hydrogel using human dermal fibroblast-adult (HDFa) cells, displaying non-toxic characteristics. Drug release profiles displaying 49.6% in the first 8 h and 97.5% within 72 h, similar to the native polymer (42.8% in first 8 h and 90.1% within 72 h). Under applied external stimuli, the modified hydrogel displayed significant gelling properties and structure deformation/recovery behaviour, confirmed using rheological evaluation (viscosity and thixotropic area of 8095.3 mPas and 26.23%, respectively). The modified hydrogel, thus, offers great possibility for designing smart synovial fluids as a biomimetic aqueous lubricant for joint-related injuries and arthritis-induced conditions. In addtion, the combination of thixotropy, non-toxicity, and drug release capabilities enables potential viscosupplementation for clinical application
    corecore