4,106 research outputs found
Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays
Some proposals to account for the highest energy cosmic rays predict that
they should point to their sources. We study the five highest energy events
(E>10^20 eV) and find they are all aligned with compact, radio-loud quasars.
The probability that these alignments are coincidental is 0.005, given the
accuracy of the position measurements and the rarity of such sources. The
source quasars have redshifts between 0.3 and 2.2. If the correlation pointed
out here is confirmed by further data, the primary must be a new hadron or one
produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary
to break out the tables and latex them separately using article.sty rather
than revtex.st
The alpha-gamma transition of Cerium is entropy-driven
We emphasize, on the basis of experimental data and theoretical calculations,
that the entropic stabilization of the gamma-phase is the main driving force of
the alpha-gamma transition of cerium in a wide temperature range below the
critical point. Using a formulation of the total energy as a functional of the
local density and of the f-orbital local Green's functions, we perform
dynamical mean-field theory calculations within a new implementation based on
the multiple LMTO method, which allows to include semi-core states. Our results
are consistent with the experimental energy differences and with the
qualitative picture of an entropy-driven transition, while also confirming the
appearance of a stabilization energy of the alpha phase as the quasiparticle
Kondo resonance develops.Comment: 5 pages, 6 figure
Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos
We analyze the processes relevant for star formation in a model with dark
matter in the form of sterile neutrinos. Sterile neutrino decays produce an
X-ray background radiation that has a two-fold effect on the collapsing clouds
of hydrogen. First, the X-rays ionize the gas and cause an increase in the
fraction of molecular hydrogen, which makes it easier for the gas to cool and
to form stars. Second, the same X-rays deposit a certain amount of heat, which
could, in principle, thwart the cooling of gas. We find that, in all the cases
we have examined, the overall effect of sterile dark matter is to facilitate
the cooling of gas. Hence, we conclude that dark matter in the form of sterile
neutrinos can help the early collapse of gas clouds and the subsequent star
formation.Comment: aastex, 31 pages, 4 figures; one figure and some references added,
minor changes in the text; to appear in Astrophysical Journa
The Origin of Galactic Cosmic Rays
Motivated by recent measurements of the major components of the cosmic
radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a
model in which there are two distinct kinds of cosmic ray accelerators in the
galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per
nucleon suggests that these two elements do not have the same spectrum of
magnetic rigidity over this entire region and that these two dominant elements
therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures,
uuencode
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Is the Mott transition relevant to f-electron metals ?
We study how a finite hybridization between a narrow correlated band and a
wide conduction band affects the Mott transition. At zero temperature, the
hybridization is found to be a relevant perturbation, so that the Mott
transition is suppressed by Kondo screening. In contrast, a first-order
transition remains at finite temperature, separating a local moment phase and a
Kondo- screened phase. The first-order transition line terminates in two
critical endpoints. Implications for experiments on f-electron materials such
as the Cerium alloy CeLaTh are discussed.Comment: 5 pages, 3 figure
Absolute calibration of the LOPES antenna system
Radio emission in extensive air showers arises from an interaction with the
geomagnetic field and is subject of theoretical studies. This radio emission
has advantages for the detection of high energy cosmic rays compared to
secondary particle or fluorescence measurement methods. Radio antennas like the
LOPES30 antenna system are suited to investigate this emission process by
detecting the radio pulses. The characteristic observable parameters like
electric field strength and pulse length require a calibration which was done
with a reference radio source resulting in an amplification factor representing
the system behavior in the environment of the KASCADE-Grande experiment.
Knowing the amplification factor and the gain of the LOPES antennas LOPES30 is
calibrated absolutely for systematic analyses of the radio emission.Comment: 5 pages, Proceedings of International Workshop on Acoustic and Radio
EeV Neutrino detection Activities: ARENA, May 17-19, 2005, DESY Zeuthe
Mean magnetic field generation in sheared rotators
A generalized mean magnetic field induction equation for differential
rotators is derived, including a compressibility, and the anisotropy induced on
the turbulent quantities from the mean magnetic field itself and a mean
velocity shear. Derivations of the mean field equations often do not emphasize
that there must be anisotropy and inhomogeneity in the turbulence for mean
field growth. The anisotropy from shear is the source of a term involving the
product of the mean velocity gradient and the cross-helicity correlation of the
isotropic parts of the fluctuating velocity and magnetic field,
\lb{\bfv}\cdot{\bfb}\rb^{(0)}. The full mean field equations are derived to
linear order in mean fields, but it is also shown that the cross-helicity term
survives to all orders in the velocity shear. This cross-helicity term can
obviate the need for a pre-existing seed mean magnetic field for mean field
growth: though a fluctuating seed field is necessary for a non-vanishing
cross-helicity, the term can produce linear (in time) mean field growth of the
toroidal field from zero mean field. After one vertical diffusion time, the
cross-helicity term becomes sub-dominant and dynamo exponential
amplification/sustenance of the mean field can subsequently ensue. The
cross-helicity term should produce odd symmetry in the mean magnetic field, in
contrast to the usually favored even modes of the dynamo amplification in
sheared discs. This may be important for the observed mean field geometries of
spiral galaxies. The strength of the mean seed field provided by the cross-
helicity depends linearly on the magnitude of the cross-helicity.Comment: 15 pages, LaTeX, matches version accepted to ApJ, minor revision
- …
