1,960 research outputs found

    Properties of mm galaxies: Constraints from K-band blank fields

    Get PDF
    We have used the IRAM Plateau de Bure mm interferometer to locate with subarcsecond accuracy the dust emission of three of the brightest 1.2mm sources in the NTT Deep Field (NDF) selected from our 1.2mm MAMBO survey at the IRAM 30m telescope. We combine these results with deep B to K imaging and VLA interferometry. Strikingly, none of the three accurately located mm galaxies MMJ120546-0741.5, MMJ120539-0745.4, and MMJ120517-0743.1 has a K-band counterpart down to the faint limit of K>21.9. This implies that these three galaxies are either extremely obscured and/or are at very high redshifts (z>~4). We combine our results with literature data for 11 more (sub)mm galaxies that are identified with similar reliability. In terms of their K-band properties, the sample divides into three roughly equal groups: (i) undetected to K~22, (ii) detected in the near-infrared but not the optical and (iii) detected in the optical with the possibility of optical follow-up spectroscopy. We find a trend in this sample between near-infrared to submm and submm to radio spectral indices, which in comparison to spectral energy distributions (SEDs) of low redshift infrared luminous galaxies suggests that the most plausible primary factor causing the extreme near-infrared faintness of our objects is their high redshift. We show that the near-infrared to radio SEDs of the sample are inconsistent with SEDs that resemble local far-infrared cool galaxies with moderate luminosities, which were proposed in some models of the submm sky. We briefly discuss the implications of the results for our understanding of galaxy formation.Comment: aastex, 5 figures. Accepted by Ap

    Large N gauge theories and topological cigars

    Get PDF
    We analyze the conjectured duality between a class of double-scaling limits of a one-matrix model and the topological twist of non-critical superstring backgrounds that contain the N=2 Kazama-Suzuki SL(2)/U(1) supercoset model. The untwisted backgrounds are holographically dual to double-scaled Little String Theories in four dimensions and to the large N double-scaling limit of certain supersymmetric gauge theories. The matrix model in question is the auxiliary Dijkgraaf-Vafa matrix model that encodes the F-terms of the above supersymmetric gauge theories. We evaluate matrix model loop correlators with the goal of extracting information on the spectrum of operators in the dual non-critical bosonic string. The twisted coset at level one, the topological cigar, is known to be equivalent to the c=1 non-critical string at self-dual radius and to the topological theory on a deformed conifold. The spectrum and wavefunctions of the operators that can be deduced from the matrix model double-scaling limit are consistent with these expectations.Comment: 34 page

    Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17

    Get PDF
    We present deep 350- and 1200-micron imaging of the region around 4C41.17 -- one of the most distant (z = 3.792) and luminous known radio galaxies -- obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly detected at 350- and 1200-micron, as are two nearby 850-micron-selected galaxies; a third 850-micron source is detected at 350-micron and coincides with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio galaxy an additional nine sources are detected at 1200-micron, bringing the total number of detected (sub)millimeter selected galaxies (SMGs) in this field to 14. Using radio images from the Very Large Array (VLA) and Spitzer mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up spectroscopy with Keck/LRIS has yielded redshifts for three of the eight robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7, i.e. well below that of 4C41.17. We infer photometric redshifts for a further four sources using their 1.6-micron (rest-frame) stellar feature as probed by the IRAC bands; only one of them is likely to be at the same redshift as 4C41.17. Thus at least four, and as many as seven, of the SMGs within the 4C41.17 field are physically unrelated to the radio galaxy. With the redshift information at hand we are able to constrain the observed over-densities of SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~ 3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA

    Double Scaling Limits and Twisted Non-Critical Superstrings

    Full text link
    We consider double-scaling limits of multicut solutions of certain one matrix models that are related to Calabi-Yau singularities of type A and the respective topological B model via the Dijkgraaf-Vafa correspondence. These double-scaling limits naturally lead to a bosonic string with c \leq 1. We argue that this non-critical string is given by the topologically twisted non-critical superstring background which provides the dual description of the double-scaled little string theory at the Calabi-Yau singularity. The algorithms developed recently to solve a generic multicut matrix model by means of the loop equations allow to show that the scaling of the higher genus terms in the matrix model free energy matches the expected behaviour in the topological B-model. This result applies to a generic matrix model singularity and the relative double-scaling limit. We use these techniques to explicitly evaluate the free energy at genus one and genus two.Comment: 32 pages, 3 figure

    The Infrared Extinction Law at Extreme Depth in a Dark Cloud Core

    Full text link
    We combined sensitive near-infrared data obtained with ground-based imagers on the ESO NTT and VLT telescopes with space mid-infrared data acquired with the IRAC imager on the Spitzer Space Telescope to calculate the extinction law A_\lambda/A_K as a function of \lambda between 1.25 and 7.76 micron to an unprecedented depth in Barnard 59, a star forming, dense core located in the Pipe Nebula. The ratios A_\lambda/A_K were calculated from the slopes of the distributions of sources in color-color diagrams \lambda-K vs. H-K. The distributions in the color-color diagrams are fit well with single slopes to extinction levels of A_K ~ 7 (A_V ~ 59 mag). Consequently, there appears to be no significant variation of the extinction law with depth through the B59 line of sight. However, when slopes are translated into the relative extinction coefficients A_\lambda/A_K, we find an extinction law which departs from the simple extrapolation of the near-infrared power law extinction curve, and agrees more closely with a dust extinction model for a cloud with a total to selective absorption R_V=5.5 and a grain size distribution favoring larger grains than those in the diffuse ISM. Thus, the difference we observe could be possibly due to the effect of grain growth in denser regions. Finally, the slopes in our diagrams are somewhat less steep than those from the study of Indebetouw et al. (2005) for clouds with lower column densities, and this indicates that the extinction law between 3 and 8 micron might vary slightly as a function of environment.Comment: 22 pages manuscript, 4 figures (2 multipart), 1 tabl

    Double Scaling Limits in Gauge Theories and Matrix Models

    Full text link
    We show that N=1\N=1 gauge theories with an adjoint chiral multiplet admit a wide class of large-N double-scaling limits where NN is taken to infinity in a way coordinated with a tuning of the bare superpotential. The tuning is such that the theory is near an Argyres-Douglas-type singularity where a set of non-local dibaryons becomes massless in conjunction with a set of confining strings becoming tensionless. The doubly-scaled theory consists of two decoupled sectors, one whose spectrum and interactions follow the usual large-N scaling whilst the other has light states of fixed mass in the large-N limit which subvert the usual large-N scaling and lead to an interacting theory in the limit. FF-term properties of this interacting sector can be calculated using a Dijkgraaf-Vafa matrix model and in this context the double-scaling limit is precisely the kind investigated in the "old matrix model'' to describe two-dimensional gravity coupled to c<1c<1 conformal field theories. In particular, the old matrix model double-scaling limit describes a sector of a gauge theory with a mass gap and light meson-like composite states, the approximate Goldstone boson of superconformal invariance, with a mass which is fixed in the double-scaling limit. Consequently, the gravitational FF-terms in these cases satisfy the string equation of the KdV hierarchy.Comment: 38 pages, 1 figure, reference adde

    Near-Infrared Photometry of the High-Redshift Quasar RDJ030117+002025: Evidence for a Massive Starburst at z=5.5

    Full text link
    With a redshift of z=5.5 and an optical blue magnitude M_B ~ -24.2 mag (~4.5 10^12 L_sun), RDJ030117+002025 is the most distant optically faint (M_B > -26 mag) quasar known. MAMBO continuum observations at lambda=1.2 mm (185 micrometer rest-frame) showed that this quasar has a far-IR luminosity comparable to its optical luminosity. We present near-infrared J- and K-band photometry obtained with NIRC on the Keck I telescope, tracing the slope of the rest frame UV spectrum of this quasar. The observed spectral index is close to the value of alpha_nu ~ -0.44 measured in composite spectra of optically-bright SDSS quasars. It thus appears that the quasar does not suffer from strong dust extinction, which further implies that its low rest-frame UV luminosity is due to an intrinsically-faint AGN. The FIR to optical luminosity ratio is then much larger than that observed for the more luminous quasars, supporting the suggestion that the FIR emission is not powered by the AGN but by a massive starburst.Comment: 6 pages, APJ in pres

    Thermodynamics of Dyonic Lifshitz Black Holes

    Full text link
    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.Comment: 26 pages, 4 figure

    Total Molecular Gas Masses of Planck - Herschel Selected Strongly Lensed Hyper Luminous Infrared Galaxies

    Get PDF
    We report the detection of CO(1 - 0) line emission from seven Planck and Herschel selected hyper luminous (LIR(8-1000um) > 10^13Lsun) infrared galaxies with the Green Bank Telescope (GBT). CO(1 - 0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 10^(13-14) Lsun), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33 - 3.26). The CO(1 - 0) lines show similar profiles as compared to Jup = 2 -4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of = 110 (pm 22) Lsun(K km s^-1 pc^-2)^-1 compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of = 0.93 (2 sources), = 0.34 (5 sources), and = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as uMH2 = (0.9 - 27.2) x 10^11(alphaCO/0.8)Msun, where u is the magnification factor and alphaCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times are, on average, tau = 80 Myr, which reveal vigorous starburst activity, and contrast the Gyr depletion timescales observed in local, normal star-forming galaxies.Comment: published in MNRAS, 9pages, 5fig
    corecore