2,640 research outputs found

    How to "measure" a structural relaxation time that is too long to be measured?

    Full text link
    It has recently become possible to prepare ultrastable glassy materials characterised by structural relaxation times which vastly exceed the duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable computer glasses. Is it possible to obtain a reliable estimate of a structural relaxation time that is too long to be measured? We review, organise, and critically discuss various methods to estimate very long relaxation times. We also perform computer simulations of three dimensional ultrastable hard spheres glasses to test and quantitatively compare some of these methods for a single model system. The various estimation methods disagree significantly and it is not yet clear how to accurately estimate extremely long relaxation times.Comment: 17 pages, 10 figures; version accepted for publication at J. Chem. Phy

    Facets of glass physics

    Full text link
    Glasses constitute a widespread form of solid matter, and glass production has been an important human technology for more than 3000 years. Despite that long history, new ways to understand the fundamental physics of glasses continue to emerge.Comment: 13 pages, 5 figures. To appear in the January 2016 issue of Physics Today (in press

    Estimation of the normal contact stiffness for frictional interface in sticking and sliding conditions

    Get PDF
    Modeling of frictional contact systems with high accuracy needs the knowledge of several contact parameters, which are mainly related to the local phenomena at the contact interfaces and affect the complex dynamics of mechanical systems in a prominent way. This work presents a newer approach for identifying reliable values of the normal contact stiffness between surfaces in contact, in both sliding and sticking conditions. The combination of experimental tests, on a dedicated set-up, with finite element modeling, allowed for an indirect determination of the normal contact stiffness. The stiffness was found to increase with increasing contact pressure and decreasing roughness, while the evolution of surface topography and third-body rheology affected the contact stiffness when sliding

    Novel Crossover in Coupled Spin Ladders

    Get PDF
    We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/21/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4\mathrm{(C_7H_{10}N)_2CuBr_4}. The staggered order was previously evidenced from a continuous and symmetric splitting of 14^{14}N NMR spectral lines on lowering temperature below Tc330T_c\simeq 330 mK, with a saturation towards 150\simeq 150 mK. Unexpectedly, the split lines begin to further separate away below T100T^*\sim 100 mK while the line width and shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate T11T_1^{-1} measurements. A very strong suppression reflecting the ordering, T11T5.5T_1^{-1}\sim T^{5.5}, observed above TT^*, is replaced by T11TT_1^{-1}\sim T below TT^*. These original NMR features are indicative of unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.Comment: 5 pages, 3 figure

    Lifetime of dynamic heterogeneity in strong and fragile kinetically constrained spin models

    Full text link
    Kinetically constrained spin models are schematic coarse-grained models for the glass transition which represent an efficient theoretical tool to study detailed spatio-temporal aspects of dynamic heterogeneity in supercooled liquids. Here, we study how spatially correlated dynamic domains evolve with time and compare our results to various experimental and numerical investigations. We find that strong and fragile models yield different results. In particular, the lifetime of dynamic heterogeneity remains constant and roughly equal to the alpha relaxation time in strong models, while it increases more rapidly in fragile models when the glass transition is approached.Comment: Submitted to the proceedings of the 6th EPS Liquid Matter Conference, Utrecht 2-6 July 200

    Attractive Tomonaga-Luttinger Liquid in a Quantum Spin Ladder

    Full text link
    We present NMR measurements of a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4 under magnetic fields up to 15 T in the temperature range from 1.2 K down to 50 mK. From the splitting of NMR lines we determine the phase boundary and the order parameter of the low-temperature (3-dimensional) long-range-ordered phase. In the Tomonaga-Luttinger regime above the ordered phase, NMR relaxation reflects characteristic power-law decay of spin correlation functions as 1/T1 T^(1/2K-1), which allows us to determine the interaction parameter K as a function of field. We find that field-dependent K varies within the 1<K<2 range which signifies attractive interaction between the spinless fermions in the Tomonaga-Luttinger liquid

    Criticality in Dynamic Arrest: Correspondence between Glasses and Traffic

    Full text link
    Dynamic arrest is a general phenomenon across a wide range of dynamic systems, but the universality of dynamic arrest phenomena remains unclear. We relate the emergence of traffic jams in a simple traffic flow model to the dynamic slow down in kinetically constrained models for glasses. In kinetically constrained models, the formation of glass becomes a true (singular) phase transition in the limit T0T\to 0. Similarly, using the Nagel-Schreckenberg model to simulate traffic flow, we show that the emergence of jammed traffic acquires the signature of a sharp transition in the deterministic limit \pp\to 1, corresponding to overcautious driving. We identify a true dynamical critical point marking the onset of coexistence between free flowing and jammed traffic, and demonstrate its analogy to the kinetically constrained glass models. We find diverging correlations analogous to those at a critical point of thermodynamic phase transitions.Comment: 4 pages, 4 figure

    Equilibrium equation of state of a hard sphere binary mixture at very large densities using replica exchange Monte-Carlo simulations

    Full text link
    We use replica exchange Monte-Carlo simulations to measure the equilibrium equation of state of the disordered fluid state for a binary hard sphere mixture up to very large densities where standard Monte-Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we use (up to N=100), we find no sign of a pressure discontinuity near the location of dynamic glass singularities extrapolated using either algebraic or simple exponential divergences, suggesting they do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for the fate of the fluid state in the thermodynamic limit.Comment: 10 pages, 8 fig

    Slow flows of yield stress fluids: complex spatio-temporal behaviour within a simple elasto-plastic model

    Full text link
    A minimal athermal model for the flow of dense disordered materials is proposed, based on two generic ingredients: local plastic events occuring above a microscopic yield stress, and the non-local elastic release of the stress these events induce in the material. A complex spatio-temporal rheological behaviour results, with features in line with recent experimental observations. At low shear rates, macroscopic flow actually originates from collective correlated bursts of plastic events, taking place in dynamically generated fragile zones. The related correlation length diverges algebraically at small shear rates. In confined geometries bursts occur preferentially close to the walls yielding an intermittent form of flow localization.Comment: 4 pages, 4 figure

    A Molecular Hydrodynamic Theory of Supercooled Liquids and Colloidal Suspensions under Shear

    Full text link
    We extend the conventional mode-coupling theory of supercooled liquids to systems under stationary shear flow. Starting from generalized fluctuating hydrodynamics, a nonlinear equation for the intermediate scattering function is constructed. We evaluate the solution numerically for a model of a two dimensional colloidal suspension and find that the structural relaxation time decreases as γ˙ν\dot{\gamma}^{-\nu} with an exponent ν1\nu \leq 1, where γ˙\dot{\gamma} is the shear rate. The results are in qualitative agreement with recent molecular dynamics simulations. We discuss the physical implications of the results.Comment: 5 pages, 1 figur
    corecore