435 research outputs found
Comparison of PBO solvers in a dependency solving domain
Linux package managers have to deal with dependencies and conflicts of
packages required to be installed by the user. As an NP-complete problem, this
is a hard task to solve. In this context, several approaches have been pursued.
Apt-pbo is a package manager based on the apt project that encodes the
dependency solving problem as a pseudo-Boolean optimization (PBO) problem. This
paper compares different PBO solvers and their effectiveness on solving the
dependency solving problem.Comment: In Proceedings LoCoCo 2010, arXiv:1007.083
On the Floquet Theory of Delay Differential Equations
We present an analytical approach to deal with nonlinear delay differential
equations close to instabilities of time periodic reference states. To this end
we start with approximately determining such reference states by extending the
Poincar'e Lindstedt and the Shohat expansions which were originally developed
for ordinary differential equations. Then we systematically elaborate a linear
stability analysis around a time periodic reference state. This allows to
approximately calculate the Floquet eigenvalues and their corresponding
eigensolutions by using matrix valued continued fractions
SAT based Enforcement of Domotic Effects in Smart Environments
The emergence of economically viable and efficient sensor technology provided impetus to the development of smart devices (or appliances). Modern smart environments are equipped with a multitude of smart devices and sensors, aimed at delivering intelligent services to the users of smart environments. The presence of these diverse smart devices has raised a major problem of managing environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the environments using user defined goals. `Domotic Effects' is a user goal modeling framework, which provides Ambient Intelligence (AmI) designers and integrators with an abstract layer that enables the definition of generic goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. The high-level nature of domotic effects also allows the residents to program their personal space as they see fit: they can define different achievement criteria for a particular generic goal, e.g., by defining a combination of devices having some particular states, by using domain-specific custom operators. This paper describes an approach for the automatic enforcement of domotic effects in case of the Boolean application domain, suitable for intelligent monitoring and control in domotic environments. Effect enforcement is the ability to determine device configurations that can achieve a set of generic goals (domotic effects). The paper also presents an architecture to implement the enforcement of Boolean domotic effects, and results obtained from carried out experiments prove the feasibility of the proposed approach and highlight the responsiveness of the implemented effect enforcement architectur
Verification of Item Usage Rules in Product Configuration
In the development of complex products product configuration systems are often used to support the development process. Item Usage Rules (IURs) are conditions for including specific items in products bills of materials based on a high-level product description. Large number of items and significant complexity of IURs make it difficult to maintain and analyze IURs manually. In this paper we present an automated approach for verifying IURs, which guarantees the presence of exactly one item from a predefined set in each product, as well as that an IUR can be reformulated without changing the set of products for which the item was included
Spatiotemporal communication with synchronized optical chaos
We propose a model system that allows communication of spatiotemporal
information using an optical chaotic carrier waveform. The system is based on
broad-area nonlinear optical ring cavities, which exhibit spatiotemporal chaos
in a wide parameter range. Message recovery is possible through chaotic
synchronization between transmitter and receiver. Numerical simulations
demonstrate the feasibility of the proposed scheme, and the benefit of the
parallelism of information transfer with optical wavefronts.Comment: 4 pages, 5 figure
Interaction between Injection Points during Hydraulic Fracturing
We present a model of the hydraulic fracturing of heterogeneous poroelastic
media. The formalism is an effective continuum model that captures the coupled
dynamics of the fluid pressure and the fractured rock matrix and models both
the tensile and shear failure of the rock. As an application of the formalism,
we study the geomechanical stress interaction between two injection points
during hydraulic fracturing (hydrofracking) and how this interaction influences
the fracturing process. For injection points that are separated by less than a
critical correlation length, we find that the fracturing process around each
point is strongly correlated with the position of the neighboring point. The
magnitude of the correlation length depends on the degree of heterogeneity of
the rock and is on the order of 30-45 m for rocks with low permeabilities. In
the strongly correlated regime, we predict a novel effective fracture-force
that attracts the fractures toward the neighboring injection point.Comment: Submitte
Generalized Totalizer Encoding for Pseudo-Boolean Constraints
Pseudo-Boolean constraints, also known as 0-1 Integer Linear Constraints, are
used to model many real-world problems. A common approach to solve these
constraints is to encode them into a SAT formula. The runtime of the SAT solver
on such formula is sensitive to the manner in which the given pseudo-Boolean
constraints are encoded. In this paper, we propose generalized Totalizer
encoding (GTE), which is an arc-consistency preserving extension of the
Totalizer encoding to pseudo-Boolean constraints. Unlike some other encodings,
the number of auxiliary variables required for GTE does not depend on the
magnitudes of the coefficients. Instead, it depends on the number of distinct
combinations of these coefficients. We show the superiority of GTE with respect
to other encodings when large pseudo-Boolean constraints have low number of
distinct coefficients. Our experimental results also show that GTE remains
competitive even when the pseudo-Boolean constraints do not have this
characteristic.Comment: 10 pages, 2 figures, 2 tables. To be published in 21st International
Conference on Principles and Practice of Constraint Programming 201
Consistency Checking for the Evolution of Cardinality-based Feature Models
International audienceFeature models (FMs) are a widely used approach to specify the commonalities and variability in variable systems and software product lines. Various works have addressed edits to FMs for FM evolution and tool support to ensure consistency of FMs. An important extension to FMs are feature cardinalities and related constraints, as extensively used e.g., when modeling variability of cloud computing environments. Since cardinality-based FMs pose additional complexity, additional support for evolution and consistency checking with respect to feature cardinalities would be desirable, but has not been addressed yet. In this paper, we discuss common cardinality-based FM edits and resulting inconsistencies based on experiences with FMs in cloud domain. We introduce tool-support for automated inconsistency detection and explanation based on an off-the-shelf solver. We demonstrate the feasibility of the approach by an empirical evaluation showing the performance of the tool
Experimental observation of spatial antibunching of photons
We report an interference experiment that shows transverse spatial
antibunching of photons. Using collinear parametric down-conversion in a
Young-type fourth-order interference setup we show interference patterns that
violate the classical Schwarz inequality and should not exist at all in a
classical description.Comment: 4 pages, 7 figure
- âŠ