288 research outputs found

    Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.EAR is a Herchel Smith Fellow. MB and HB are supported by the Centre for Trophoblast Research, MB is a Next Generation Research Fellow. MJB is supported by a BBSRC studentship. The WR lab is supported by BBSRC, MRC, the Wellcome Trust, EU EpiGeneSys and BLUEPRINT. The SB lab is supported by core funding from Cancer Research UK

    Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms

    Get PDF
    This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time

    Base resolution maps reveal the importance of 5-hydroxymethylcytosine in a human glioblastoma

    Get PDF
    Aberrant genetic and epigenetic variations drive malignant transformation and are hallmarks of cancer. Using PCR-free sample preparation we achieved the first in-depth whole genome (hydroxyl)-methylcytosine, single-base-resolution maps from a glioblastoma tumour/margin sample of a patient. Our data provide new insights into how genetic and epigenetic variations are interrelated. In the tumour, global hypermethylation with a depletion of 5-hydroxymethylcytosine was observed. The majority of single nucleotide variations were identified as cytosine-to-thymine deamination products within CpG context, where cytosine was preferentially methylated in the margin. Notably, we observe that cells neighbouring tumour cells display epigenetic alterations characteristic of the tumour itself although genetically they appear “normal”. This shows the potential transfer of epigenetic information between cells that contributes to the intratumour heterogeneity of glioblastoma. Together, our reference (epi)-genome provides a human model system for future studies that aim to explore the link between genetic and epigenetic variations in cancer progression.Cancer Research UK 236 (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z

    ASCIIGenome: A command line genome browser for console terminals.

    Get PDF
    Motivation: Current genome browsers are designed to work via graphical user interfaces (GUIs), which, however intuitive, are not amenable to operate within console terminals and therefore are difficult to streamline or integrate in scripts. To circumvent these limitations, ASCIIGenome runs exclusively via command line interface to display genomic data directly in a terminal window. By following the same philosophy of UNIX tools, ASCIIGenome aims to be easily integrated with the command line, including batch processing of data, and therefore enables an effective exploration of the data. Implementation: ASCIIGenome is written in Java. Consequently it is a cross-platform tool and requires minimal or no installation. Some of the common genomic data types are supported and data access on remote ftp servers is possible. Speed and memory footprint are comparable to or better than those of common genome browsers. Availability: Software and source code (MIT License) are available at https://github.com/dariober/ASCIIGenome with detailed documentation at http://asciigenome.readthedocs.ioD.B. is part of the Balasubramanian laboratory, which is supported by core funding from Cancer Research UK (C14303/A17197)

    Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands

    Get PDF
    Haemonchus contortus appears to be the most economically important helminth parasite for small ruminant production in many regions of the world. The two sheep breeds native to the Canary Islands display distinctly different resistant phenotypes under both natural and experimental infections. Canaria Hair Breed (CHB) tends to have significantly lower worm burden and delayed and reduced egg production than the susceptible Canaria Sheep (CS). To understand molecular mechanisms underlying host resistance, we compared the abomasal mucosal transcriptome of the two breeds in response to Haemonchus infection using RNAseq technology. The transcript abundance of 711 and 50 genes were significantly impacted by infection in CHB and CS, respectively (false discovery rate <0.05) while 27 of these genes were significantly affected in both breeds. Likewise, 477 and 16 Gene Ontology (GO) terms were significantly enriched in CHB and CS, respectively (P < 1.0 × 10(−4)). A broad range of mechanisms have evolved in resistant CHB to provide protection against the parasite. Our findings suggest that readily inducible acute inflammatory responses, complement activation, accelerated cell proliferation and subsequent tissue repair, and immunity directed against parasite fecundity all contributed to the development of host resistance to parasitic infection in the resistant breed

    FOXM1 binds directly to non-consensus sequences in the human genome.

    Get PDF
    BACKGROUND: The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. RESULTS: An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. CONCLUSIONS: A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences.We would like to acknowledge the Genomics and bioinformatics core at the CRUK Research Institute for the Illumina sequencing and the Proteomics core for the LC/MS-MS protein analysis for the RIME experiments. We acknowledge the support from The University of Cambridge and Cancer Research UK. The Balasubramanian Laboratory is supported by core funding from Cancer Research UK (C14303/A17197). SB is a Wellcome Trust Principle Investigator.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-015-0696-

    G-quadruplex structures mark human regulatory chromatin

    Get PDF
    G-quadruplex (G4) structural motifs have been linked to transcription, replication and genome instability and are implicated in cancer and other diseases. However, it is crucial to demonstrate the bona fide formation of G4 structures within an endogenous chromatin context. Herein we address this through the development of G4 ChIP-seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach. We find ∼10,000 G4 structures in human chromatin, predominantly in regulatory, nucleosome-depleted regions. G4 structures are enriched in the promoters and 5' UTRs of highly transcribed genes, particularly in genes related to cancer and in somatic copy number amplifications, such as MYC\textit{MYC}. Strikingly, de novo\textit{de novo} and enhanced G4 formation are associated with increased transcriptional activity, as shown by HDAC inhibitor-induced chromatin relaxation and observed in immortalized as compared to normal cellular states. Our findings show that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.European Molecular Biology Organization (EMBO Long-Term Fellowship), University of Cambridge, Cancer Research UK (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z

    5-Formylcytosine alters the structure of the DNA double helix.

    Get PDF
    The modified base 5-formylcytosine (5fC) was recently identified in mammalian DNA and might be considered to be the 'seventh' base of the genome. This nucleotide has been implicated in active demethylation mediated by the base excision repair enzyme thymine DNA glycosylase. Genomics and proteomics studies have suggested an additional role for 5fC in transcription regulation through chromatin remodeling. Here we propose that 5fC might affect these processes through its effect on DNA conformation. Biophysical and structural analysis revealed that 5fC alters the structure of the DNA double helix and leads to a conformation unique among known DNA structures including those comprising other cytosine modifications. The 1.4-Å-resolution X-ray crystal structure of a DNA dodecamer comprising three 5fCpG sites shows how 5fC changes the geometry of the grooves and base pairs associated with the modified base, leading to helical underwinding.E.-A.R. is supported as a Herchel Smith Fellow. The Balasubramanian laboratory is supported by a Senior Investigator Award from the Wellcome Trust (099232/Z/12/Z to S.B.), and it also receives core funding from Cancer Research UK (C9681/A11961 to S.B.). D.Y.C. is supported by the Crystallographic X-ray Facility (CXF) at the Department of Biochemistry, University of Cambridge, and B.F.L. is supported by the Wellcome Trust (076846/Z/05/A to B.F.L.). We thank the staff of Soleil and Diamond Light Source for use of facilities. We thank C. Calladine for stimulating discussions.This is the accepted manuscript for a paper published in Nature Structural & Molecular Biology 22, 44–49 (2015) doi: 10.1038/nsmb.293

    Immunoprecipitation of RNA-DNA hybrid interacting proteins in <em>Trypanosoma brucei</em> reveals conserved and novel activities, including in the control of surface antigen expression needed for immune evasion by antigenic variation

    Get PDF
    RNA-DNA hybrids are epigenetic features of genomes that provide a diverse and growing range of activities. Understanding of these functions has been informed by characterising the proteins that interact with the hybrids, but all such analyses have so far focused on mammals, meaning it is unclear if a similar spectrum of RNA-DNA hybrid interactors is found in other eukaryotes. The African trypanosome is a single-cell eukaryotic parasite of the Discoba grouping and displays substantial divergence in several aspects of core biology from its mammalian host. Here, we show that DNA-RNA hybrid immunoprecipitation coupled with mass spectrometry recovers 602 putative interactors in T. brucei mammal- and insect-infective cells, some providing activities also found in mammals and some lineage-specific. We demonstrate that loss of three factors, two putative helicases and a RAD51 paralogue, alters T. brucei nuclear RNA-DNA hybrid and DNA damage levels. Moreover, loss of each factor affects the operation of the parasite immune survival mechanism of antigenic variation. Thus, our work reveals the broad range of activities contributed by RNA-DNA hybrids to T. brucei biology, including new functions in host immune evasion as well as activities likely fundamental to eukaryotic genome function
    corecore