78 research outputs found
Asymmetric Primitive-Model Electrolytes: Debye-Huckel Theory, Criticality and Energy Bounds
Debye-Huckel (DH) theory is extended to treat two-component size- and
charge-asymmetric primitive models, focussing primarily on the 1:1 additive
hard-sphere electrolyte with, say, negative ion diameters, a--, larger than the
positive ion diameters, a++. The treatment highlights the crucial importance of
the charge-unbalanced ``border zones'' around each ion into which other ions of
only one species may penetrate. Extensions of the DH approach which describe
the border zones in a physically reasonable way are exact at high and low
density, , and, furthermore, are also in substantial agreement with
recent simulation predictions for \emph{trends} in the critical parameters,
and , with increasing size asymmetry. Conversely, the simplest
linear asymmetric DH description, which fails to account for physically
expected behavior in the border zones at low , can violate a new lower bound
on the energy (which applies generally to models asymmetric in both charge and
size). Other recent theories, including those based on the mean spherical
approximation, have predicted trends in the critical parameters quite opposite
to those established by the simulations.Comment: to appear in Physical Review
Charge Oscillations in Debye-Hueckel Theory
The recent generalized Debye-Hueckel (GDH) theory is applied to the
calculation of the charge-charge correlation function G_{ZZ}(r). The resulting
expression satisfies both (i) the charge neutrality condition and (ii) the
Stillinger-Lovett second-moment condition for all T and rho_N, the overall ion
density, and (iii) exhibits charge oscillations for densities above a "Kirkwood
line" in the (rho_N,T) plane. This corrects the normally assumed DH
correlations, and, when combined with the GDH analysis of the density
correlations, leaves the GDH theory as the only complete description of ionic
correlation functions, as judged by (i)-(iii), (iv) exact low-density (rho_N,T)
variation, and (v) reasonable behavior near criticality.Comment: 6 pages, EuroPhys.sty (now available on archive), 1 eps figur
Loss of TET2 increases B-1 cell number and IgM production while limiting CDR3 diversity
Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM
On the Adsorption of Two-State Polymers
Monte Carlo(MC) simulations produce evidence that annealed copolymers
incorporating two interconverting monomers, P and H, adsorb as homopolymers
with an effective adsorption energy per monomer, , that depends
on the PH equilibrium constants in the bulk and at the surface. The cross-over
exponent, is unmodified. The MC results on the overall PH ratio, the PH
ratio at the surface and in the bulk as well as the number of adsorbed monomers
are in quantitative agreement with this hypothesis and the theoretically
derived . The evidence suggests that the form of surface
potential does not affect but does influence the PH equilibrium.Comment: 22 pages, 10 figure
A Microarray-Based Genetic Screen for Yeast Chronological Aging Factors
Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA “bar-code” sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Δ mutant and exacerbated by a short-lived atg16Δ autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process
Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network
Reconstruction of novel transcription factor regulons through inference of their binding sites
Controlling and characterising the deposits from polymer droplets containing microparticles and salt
It is very well known that as suspension droplets evaporate, a pinned contact line leads to strong outwards capillary flow resulting in a robust coffee ring-stain at the periphery of the droplet. Conversely tall pillars are deposited in the centre of the droplet when aqueous droplets of poly(ethylene oxide) evaporate following a boot-strapping process in which the contact line undergoes fast receding, driven by polymer precipitation. Here we map out the phase behaviour of a combined particle-polymer system, illustrating a range of final deposit shapes, from ring-stain to flat deposit to pillar. Deposit topologies are measured using profile images and stylus profilometery, and characterised using the skewness of the profile as a simple analytic method for quantifying the shapes: pillars produce positive skew, flat deposits have zero skew and ring-stains have a negative value. We also demonstrate that pillar formation can be disrupted using potassium sulphate salt solutions, which change the water from a good solvent to a thetapoint solvent, consequently reducing the size of the polymer coils. This inhibits polymer crystallisation, interfering with the bootstrap process and ultimately preventing pillars from forming. Again, the deposit shapes are quantified using the skew parameter
- …
