327 research outputs found

    Nonequilibrium translational effects in evaporation and condensation

    Full text link
    This paper shows how mesoscopic nonequilibrium thermodynamics can be applied to condensation and evaporation. By extending the normal set of thermodynamic variables with two internal variables, we are able to give a new theoretical foundation for a mechanism of condensation that has been proposed from molecular simulation results. The flux does not follow a simple Arrhenius formula for small activation energies which are relevant here.Comment: To appear in J. Chem. Phy

    Resistances for heat and mass transfer through a liquid-vapor interface in a binary mixture

    Full text link
    In this paper we calculate the interfacial resistances to heat and mass transfer through a liquid-vapor interface in a binary mixture. We use two methods, the direct calculation from the actual non-equilibrium solution and integral relations, derived earlier. We verify, that integral relations, being a relatively faster and cheaper method, indeed gives the same results as the direct processing of a non-equilibrium solution. Furthermore we compare the absolute values of the interfacial resistances with the ones obtained from kinetic theory. Matching the diagonal resistances for the binary mixture we find that kinetic theory underestimates the cross coefficients. The heat of transfer is as a consequence correspondingly larger.Comment: 15 pages, 5 figure

    Substrate influence on the plasmonic response of clusters of spherical nanoparticles

    Full text link
    The plasmonic response of nanoparticles is exploited in many subfields of science and engineering to enhance optical signals associated with probes of nanoscale and subnanoscale entities. We develop a numerical algorithm based on previous theoretical work that addresses the influence of a substrate on the plasmonic response of collections of nanoparticles of spherical shape. Our method is a real space approach within the quasi-static limit that can be applied to a wide range of structures. We illustrate the role of the substrate through numerical calculations that explore single nanospheres and nanosphere dimers fabricated from either a Drude model metal or from silver on dielectric substrates, and from dielectric spheres on silver substrates.Comment: 12 pages, 13 figure
    corecore