The plasmonic response of nanoparticles is exploited in many subfields of
science and engineering to enhance optical signals associated with probes of
nanoscale and subnanoscale entities. We develop a numerical algorithm based on
previous theoretical work that addresses the influence of a substrate on the
plasmonic response of collections of nanoparticles of spherical shape. Our
method is a real space approach within the quasi-static limit that can be
applied to a wide range of structures. We illustrate the role of the substrate
through numerical calculations that explore single nanospheres and nanosphere
dimers fabricated from either a Drude model metal or from silver on dielectric
substrates, and from dielectric spheres on silver substrates.Comment: 12 pages, 13 figure