679 research outputs found

    Timelike and Spacelike Matter Inheritance Vectors in Specific Forms of Energy-Momentum Tensor

    Full text link
    This paper is devoted to the investigation of the consequences of timelike and spacelike matter inheritance vectors in specific forms of energy-momentum tensor, i.e., for string cosmology (string cloud and string fluid) and perfect fluid. Necessary and sufficient conditions are developed for a spacetime with string cosmology and perfect fluid to admit a timelike matter inheritance vector, parallel to uau^a and spacelike matter inheritance vector, parallel to xax^a. We compare the outcome with the conditions of conformal Killing vectors. This comparison provides us the conditions for the existence of matter inheritance vector when it is also a conformal Killing vector. Finally, we discuss these results for the existence of matter inheritance vector in the special cases of the above mentioned spacetimes.Comment: 27 pages, accepted for publication in Int. J. of Mod. Phys.

    Rose Downy Mildew

    Get PDF

    A Recurrent Stop-Codon Mutation in Succinate Dehydrogenase Subunit B Gene in Normal Peripheral Blood and Childhood T-Cell Acute Leukemia

    Get PDF
    BACKGROUND: Somatic cytidine mutations in normal mammalian nuclear genes occur during antibody diversification in B lymphocytes and generate an isoform of apolipoprotein B in intestinal cells by RNA editing. Here, I describe that succinate dehydrogenase (SDH; mitochondrial complex II) subunit B gene (SDHB) is somatically mutated at a cytidine residue in normal peripheral blood mononuclear cells (PBMCs) and T-cell acute leukemia. Germ line mutations in the SDHB, SDHC or SDHD genes cause hereditary paraganglioma (PGL) tumors which show constitutive activation of homeostatic mechanisms induced by oxygen deprivation (hypoxia). PRINCIPAL FINDINGS: To determine the prevalence of a mutation identified in the SDHB mRNA, 180 samples are tested. An SDHB stop-codon mutation c.136C>T (R46X) is present in a significant fraction (average = 5.8%, range = less than 1 to 30%, n = 52) of the mRNAs obtained from PBMCs. In contrast, the R46X mutation is present in the genomic DNA of PBMCs at very low levels. Examination of the PBMC cell-type subsets identifies monocytes and natural killer (NK) cells as primary sources of the mutant transcript, although lesser contributions also come from B and T lymphocytes. Transcript sequence analyses in leukemic cell lines derived from monocyte, NK, T and B cells indicate that the mutational mechanism targeting SDHB is operational in T-cell acute leukemia. Accordingly, substantial levels (more than 3%) of the mutant SDHB transcripts are detected in five of 20 primary childhood T-cell acute lymphoblastic leukemia (T-ALL) bone marrow samples, but in none of 20 B-ALL samples. In addition, distinct heterozygous SDHB missense DNA mutations are identified in Jurkat and TALL-104 cell lines which are derived from T-ALLs. CONCLUSIONS: The identification of a recurrent, inactivating stop-codon mutation in the SDHB gene in normal blood cells suggests that SDHB is targeted by a cytidine deaminase enzyme. The SDHB mutations in normal PBMCs and leukemic T cells might play a role in cellular pre-adaptation to hypoxia

    Spacelike Ricci Inheritance Vectors in a Model of String Cloud and String Fluid Stress Tensor

    Full text link
    We study the consequences of the existence of spacelike Ricci inheritance vectors (SpRIVs) parallel to xax^a for model of string cloud and string fluid stress tensor in the context of general relativity. Necessary and sufficient conditions are derived for a spacetime with a model of string cloud and string fluid stress tensor to admit a SpRIV and a SpRIV which is also a spacelike conformal Killing vector (SpCKV). Also, some results are obtained.Comment: 11 page

    Enhancing structure relaxations for first-principles codes: an approximate Hessian approach

    Get PDF
    We present a method for improving the speed of geometry relaxation by using a harmonic approximation for the interaction potential between nearest neighbor atoms to construct an initial Hessian estimate. The model is quite robust, and yields approximately a 30% or better reduction in the number of calculations compared to an optimized diagonal initialization. Convergence with this initializer approaches the speed of a converged BFGS Hessian, therefore it is close to the best that can be achieved. Hessian preconditioning is discussed, and it is found that a compromise between an average condition number and a narrow distribution in eigenvalues produces the best optimization.Comment: 9 pages, 3 figures, added references, expanded optimization sectio

    Reverse time migration

    Get PDF
    ABSTRACT Migration of stacked or zero-offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets

    Genome sequence of the plant-growth-promoting bacterium Bacillus velezensis EU07

    Get PDF
    Many Gram-positive spore-forming rhizobacteria of the genus Bacillus show potential as biocontrol biopesticides that promise improved sustainability and ecological safety in agriculture. Here we present a draft-quality genome sequence for Bacillus velezensis EU07, which shows growth-promotion in tomato plants and biocontrol against Fusarium head blight. We found that the genome of EU07 is almost identical to that of the commercially used strain QST713 but identified 46 single-nucleotide differences that distinguish these strains from each other. The availability of this genome sequence will facilitate future efforts to unravel the genetic and molecular basis for its beneficial properties

    Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms

    Full text link
    We describe a global optimization technique using `basin-hopping' in which the potential energy surface is transformed into a collection of interpenetrating staircases. This method has been designed to exploit the features which recent work suggests must be present in an energy landscape for efficient relaxation to the global minimum. The transformation associates any point in configuration space with the local minimum obtained by a geometry optimization started from that point, effectively removing transition state regions from the problem. However, unlike other methods based upon hypersurface deformation, this transformation does not change the global minimum. The lowest known structures are located for all Lennard-Jones clusters up to 110 atoms, including a number that have never been found before in unbiased searches.Comment: 8 pages, 3 figures, revte

    The Open Assembly Model for the Exchange of Assembly and Tolerance Information: Overview and Example

    Get PDF
    In early design phases an effective information exchange among CAD (Computer Aided Design) tools depends on a standardized representation for the product data in all PLM (Product Lifecycle Management) tools. The NIST Core Product Model (CPM) and its extension are proposed to provide the required base-level product model that is open, non-proprietary, generic, extensible, independent of any one product development process and capable of capturing the full engineering context commonly shared in product development [1]. The Open Assembly Model (OAM) Model extends CPM to provide a standard representation and exchange protocol for assembly. The assembly information model emphasizes the nature and information requirements for part features and assembly relationships. The model includes both assembly as a concept and assembly as a data structure. For the latter it uses the model data structures of ISO 10303, informally known as the Standard for the Exchange of Product model data (STEP)[2]. The objective of the paper is to show how the OAM can be used to realize seamless integration of product information, with an emphasis on assembly, throughout all phases of a product design. A gearbox design example is used to illustrate the process

    The Open Assembly Model for the Exchange of Assembly and Tolerance Information: Overview and Example

    Get PDF
    In early design phases an effective information exchange among CAD (Computer Aided Design) tools depends on a standardized representation for the product data in all PLM (Product Lifecycle Management) tools. The NIST Core Product Model (CPM) and its extension are proposed to provide the required base-level product model that is open, non-proprietary, generic, extensible, independent of any one product development process and capable of capturing the full engineering context commonly shared in product development [1]. The Open Assembly Model (OAM) Model extends CPM to provide a standard representation and exchange protocol for assembly. The assembly information model emphasizes the nature and information requirements for part features and assembly relationships. The model includes both assembly as a concept and assembly as a data structure. For the latter it uses the model data structures of ISO 10303, informally known as the Standard for the Exchange of Product model data (STEP)[2]. The objective of the paper is to show how the OAM can be used to realize seamless integration of product information, with an emphasis on assembly, throughout all phases of a product design. A gearbox design example is used to illustrate the process
    • …
    corecore