1,847 research outputs found
An investigation of spray velocity resulting from high-velocity penetration of thin plates by disks
Analysis based on one-dimensional shock wave theory to study maximum velocity of spray emanating from rear surface of thin meteoroid bumpe
Planar Embeddings with Small and Uniform Faces
Motivated by finding planar embeddings that lead to drawings with favorable
aesthetics, we study the problems MINMAXFACE and UNIFORMFACES of embedding a
given biconnected multi-graph such that the largest face is as small as
possible and such that all faces have the same size, respectively.
We prove a complexity dichotomy for MINMAXFACE and show that deciding whether
the maximum is at most is polynomial-time solvable for and
NP-complete for . Further, we give a 6-approximation for minimizing
the maximum face in a planar embedding. For UNIFORMFACES, we show that the
problem is NP-complete for odd and even . Moreover, we
characterize the biconnected planar multi-graphs admitting 3- and 4-uniform
embeddings (in a -uniform embedding all faces have size ) and give an
efficient algorithm for testing the existence of a 6-uniform embedding.Comment: 23 pages, 5 figures, extended version of 'Planar Embeddings with
Small and Uniform Faces' (The 25th International Symposium on Algorithms and
Computation, 2014
performances of an orc power unit for waste heat recovery on heavy duty engine
Abstract Reciprocating internal combustion engines (ICE) are still the most used in the sector of the on-the-road transportation, both for passengers and freight. CO2 reduction is the actual technological driver, considering the worldwide greenhouse reduction targets committed by most governments. In ICE more than one third of the fuel energy used is rejected to the environment as thermal waste through the exhaust gases. Therefore, a greater fuel economy could be achieved, if this energy was recovered and converted into useful mechanical or electrical power. This recovery appears very interesting, in particular for those engines that run at almost steady working conditions, like marine, agricultural, industrial or long-hauling vehicle applications. In this paper, an ORC-based power unit was tested on a heavy duty diesel engine. Energetic and exergetic analyses have been carried out in order to assess the real performances of the ORC unit and to individuate differences with the theoretical ones. A single stage impulse axial turbine has been tested in this work, complete with an electric variable speed generator and an AC/DC converter. The tests demonstrated that the energy conversion chain is not negligible at all and an overall net efficiency of the power unit was around 2-3 % with respect to a 10% of thermodynamic efficiency
Experimental and Numerical Dynamic Investigation of an ORC System for Waste Heat Recovery Applications in Transportation Sector
ORC power units represent a promising technology for the recovery of waste heat in Internal Combustion Engines (ICEs), allowing to reduce emissions while keeping ICE performance close to expectations. However, the intrinsic transient nature of exhaust gases represents a challenge since it leads ORCs to often work in off-design conditions. It then becomes relevant to study their transient response to optimize performance and prevent main components from operating at inadequate conditions. To assess this aspect, an experimental dynamic analysis was carried out on an ORC-based power unit bottomed to a 3 L Diesel ICE. The adoption of a scroll expander and the control of the pump revolution speed allow a wide operability of the ORC. Indeed, the refrigerant mass flow rate can be adapted according to the exhaust gas thermal power availability in order to increase thermal power recovery from exhaust gases. The experimental data confirmed that when the expander speed is not regulated, it is possible to control the cycle maximum pressure by acting on the refrigerant flow rate. The experimental data have also been used to validate a model developed to extend the analysis beyond the experimental operating limits. It was seen that a 30% mass flow rate increase allowed to raise the plant power from 750 W to 830 W
The Potential of Mixtures of Pure Fluids in ORC-based Power Units fed by Exhaust Gases in Internal Combustion Engines
Abstract ORC represents an effective challenge in the waste heat recovery from ICEs. In spite of technological aspects, its thermodynamic design still deserves attention. Mixtures of pure fluids show interesting properties able to improve exergetic efficiency of the Rankine cycle, thanks to the positive slope of the phase changing. They can reduce also ODP and GWP, helping the replacement trends of working fluids. The paper optimizes cycle exergetic efficiency considering mixtures of pure fluids. The use of hydrocarbons in mixtures is particularly suitable and when used in limited fractions with other organic fluids they loses the limits related to the flammability.R245fa is a fluid that obtains a large net power increase when used in mixtures with hydrocarbons, compared to pure fluid an optimized R245fa/benzene mixture, for instance, attains an 11% net power increase
Development of a Sliding Vane Rotary Pump for Engine Cooling
Abstract The efficiency of a pump for engine cooling system in automotive sector can be very low (15%-20%) during the homologation cycle which is more oriented to medium and low engine loads. Actual pump technology makes reference always to centrifugal pumps, which suffer in terms of efficiency when the speed changes as well as when head and flow rate delivered. In order to reduce the power absorbed by the pump, a different type is needed. A sliding vane rotary pump (SVRP) is a serious alternative having all the characteristics to fulfil the engine cooling circuit with high efficiency and reliability. In this work, a SVRP has been designed, built and tested for an existing engine cooling circuit: its performances were compared to the traditional (centrifugal) pump which today is mounted on that engine. The benefits over the homologation cycle in terms of mechanical energy and CO2 saving have been emulated thanks to a comprehensive mathematical model
Food-borne Lactiplantibacillus plantarum protect normal intestinal cells against inflammation by modulating reactive oxygen species and IL-23/IL-17 axis
Food-associated Lactiplantibacillus plantarum (Lpb. plantarum) strains, previously classified as Lactobacillus plantarum, are a promising strategy to face intestinal inflammatory diseases. Our study was aimed at clarifying the protective role of food-borne Lpb. plantarum against inflammatory damage by testing the scavenging microbial ability both in selected strains and in co-incubation with normal mucosa intestinal cells (NCM460). Here, we show that Lpb. plantarum endure high levels of induced oxidative stress through partially neutralizing reactive oxygen species (ROS), whereas they elicit their production when co-cultured with NCM460. Moreover, pre-treatment with food-borne Lpb. plantarum significantly reduce pro-inflammatory cytokines IL-17F and IL-23 levels in inflamed NCM460 cells. Our results suggest that food-vehicled Lpb. plantarum strains might reduce inflammatory response in intestinal cells by directly modulating local ROS production and by triggering the IL-23/IL-17 axis with future perspectives on health benefits in the gut derived by the consumption of functional foods enriched with selected strains
Complexity dichotomy on partial grid recognition
Deciding whether a graph can be embedded in a grid using only unit-length
edges is NP-complete, even when restricted to binary trees. However, it is not
difficult to devise a number of graph classes for which the problem is
polynomial, even trivial. A natural step, outstanding thus far, was to provide
a broad classification of graphs that make for polynomial or NP-complete
instances. We provide such a classification based on the set of allowed vertex
degrees in the input graphs, yielding a full dichotomy on the complexity of the
problem. As byproducts, the previous NP-completeness result for binary trees
was strengthened to strictly binary trees, and the three-dimensional version of
the problem was for the first time proven to be NP-complete. Our results were
made possible by introducing the concepts of consistent orientations and robust
gadgets, and by showing how the former allows NP-completeness proofs by local
replacement even in the absence of the latter
Occurrence of pathogenic and faecal Escherichia coli in layer hens
A total of 117 Escherichia coli from colibacillosis affected (APEC) and clinically healthy birds (AFEC) were serotyped and tested for the presence of virulence genes: iss, tsh, cva. A total of 54.5% E. Coli were typeable and 15 different serogroups were identified. The most common serogroups among APEC strains were O78, O2 and O128, whereas O139 was predominant in faecal strains from healthy birds. Iss, tsh e cva were more frequently detected among the septicaemic E. coli strains. The association of virulence genes was observed. Particularly, the pathotype iss-tsh-cva was present in 46.5% of APEC strains. Referring to serogroups, E. coli O78 and O2 originating from colibacillosis affected birds were always isstsh- cva positive but did not share virulence genes when they came from healthy birds
- …