3,499 research outputs found
Coherent photodissociation reactions: Observation by a novel picosecond polarization technique
In this communication, we wish to report on a novel picosecond polarization method for measuring the degree of rotational coherence that is preserved in photodissociation reactions. The systems studied here are jet-cooled van der Waals molecules; stilbene [4-6] bound [5] to He or Ne with a 1:1 composition.[7
Quantum statistical effects in multi-channel wave packet scattering of non-interacting identical particles
For a number of non-interacting identical particles entering a multi-channel
scatterer in various wave packet states, we construct a generating function for
the probabilities of various scattering outcomes. This is used to evaluate the
mean numbers of particles scattered into a given (-th)
channel, single-channel statistics, and inter-channel correlations. We show
that for initially uncorrelated particles, indistinguishability changes single
channel statistics without altering the the value of . For
uncorrelated bosons and fermions, bunching and anti-bunching behaviour can be
detected in the extreme-case probabilities, to have all particles scattered
into the same channel, or none of particles scattered into a channel, or
channels. As an example, we consider a cavity with a single long-lived
resonance accessible to the particles, which allows them to "pile up" inside
the scatterer
Theory of one-dimensional double-barrier quantum pump in two-frequency signal regime
A one-dimensional system with two -like barriers or wells
bi-chromaticaly oscillating at frequencies and is
considered. The alternating signal leads to the direct current across the
structure (even in a symmetric system). The properties of this quantum pump are
studied in a wide range of the system parameters.Comment: 4 pages, 5 figure
Ultrafast vectorial and scalar dynamics of ionic clusters: Azobenzene solvated by oxygen
The ultrafast dynamics of clusters of trans-azobenzene anion (A–) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A– was determined by monitoring in real time the transient of the A– rise, following an 800 nm excitation of A– (O2)n, where n=1–4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n>1 a quasi-O4 core is formed and that the dissociation occurs by a bond cleavage between A– and conglomerated (O2)n rather than a stepwise evaporation of O2. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (2- for A–O2 and A·O4-·(O2)n–2 for A–(O2)n, where n=2–4. Subsequent to an ultrafast electron recombination, A– rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A–-(O2)n nuclear coordinate and a slower component (1.6–36 ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2–3 ps, with a change in the sign of the transient anisotropy between A–O2 and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters
Properties of 1D two-barrier quantum pump with harmonically oscillating barriers
We study a one-dimensional quantum pump composed of two oscillating
delta-functional barriers. The linear and non-linear regimes are considered.
The harmonic signal applied to any or both barriers causes the stationary
current. The direction and value of the current depend on the frequency,
distance between barriers, value of stationary and oscillating parts of barrier
potential and the phase shift between alternating voltages.Comment: 7 pages, 8 figure
Quasiclassical negative magnetoresistance of a 2D electron gas: interplay of strong scatterers and smooth disorder
We study the quasiclassical magnetotransport of non-interacting fermions in
two dimensions moving in a random array of strong scatterers (antidots,
impurities or defects) on the background of a smooth random potential. We
demonstrate that the combination of the two types of disorder induces a novel
mechanism leading to a strong negative magnetoresistance, followed by the
saturation of the magnetoresistivity at a value determined
solely by the smooth disorder. Experimental relevance to the transport in
semiconductor heterostructures is discussed.Comment: 4 pages, 2 figure
Directed transport born from chaos in asymmetric antidot structures
It is shown that a polarized microwave radiation creates directed transport
in an asymmetric antidot superlattice in a two dimensional electron gas. A
numerical method is developed that allows to establish the dependence of this
ratchet effect on several parameters relevant for real experimental studies. It
is applied to the concrete case of a semidisk Galton board where the electron
dynamics is chaotic in the absence of microwave driving. The obtained results
show that high currents can be reached at a relatively low microwave power.
This effect opens new possibilities for microwave control of transport in
asymmetric superlattices.Comment: 8 pages, 10 figure
Quasiclassical magnetotransport in a random array of antidots
We study theoretically the magnetoresistance of a
two-dimensional electron gas scattered by a random ensemble of impenetrable
discs in the presence of a long-range correlated random potential. We believe
that this model describes a high-mobility semiconductor heterostructure with a
random array of antidots. We show that the interplay of scattering by the two
types of disorder generates new behavior of which is absent for
only one kind of disorder. We demonstrate that even a weak long-range disorder
becomes important with increasing . In particular, although
vanishes in the limit of large when only one type of disorder is present,
we show that it keeps growing with increasing in the antidot array in the
presence of smooth disorder. The reversal of the behavior of is
due to a mutual destruction of the quasiclassical localization induced by a
strong magnetic field: specifically, the adiabatic localization in the
long-range Gaussian disorder is washed out by the scattering on hard discs,
whereas the adiabatic drift and related percolation of cyclotron orbits
destroys the localization in the dilute system of hard discs. For intermediate
magnetic fields in a dilute antidot array, we show the existence of a strong
negative magnetoresistance, which leads to a nonmonotonic dependence of
.Comment: 21 pages, 13 figure
- …
