41 research outputs found
Multifractal Scaling, Geometrical Diversity, and Hierarchical Structure in the Cool Interstellar Medium
Multifractal scaling (MFS) refers to structures that can be described as a
collection of interwoven fractal subsets which exhibit power-law spatial
scaling behavior with a range of scaling exponents (concentration, or
singularity, strengths) and dimensions. The existence of MFS implies an
underlying multiplicative (or hierarchical, or cascade) process. Panoramic
column density images of several nearby star- forming cloud complexes,
constructed from IRAS data and justified in an appendix, are shown to exhibit
such multifractal scaling, which we interpret as indirect but quantitative
evidence for nested hierarchical structure. The relation between the dimensions
of the subsets and their concentration strengths (the "multifractal spectrum'')
appears to satisfactorily order the observed regions in terms of the mixture of
geometries present: strong point-like concentrations, line- like filaments or
fronts, and space-filling diffuse structures. This multifractal spectrum is a
global property of the regions studied, and does not rely on any operational
definition of "clouds.'' The range of forms of the multifractal spectrum among
the regions studied implies that the column density structures do not form a
universality class, in contrast to indications for velocity and passive scalar
fields in incompressible turbulence, providing another indication that the
physics of highly compressible interstellar gas dynamics differs fundamentally
from incompressible turbulence. (Abstract truncated)Comment: 27 pages, (LaTeX), 13 figures, 1 table, submitted to Astrophysical
Journa
3-BrPA eliminates human bladder cancer cells with highly oncogenic signatures via engagement of specific death programs and perturbation of multiple signaling and metabolic determinants
Preparation of 4,4′-(1-[2H6]methylethylidene)bis-[2,3,5,6-2H4]phenol and its application to the measurement of bisphenol A in beverages by stable isotope dilution mass spectrometry
metabolism of leuprolide in mice—mass spectrometry‐based biomarker measurement for efficacy and toxicity
Expression of Toll-like receptors (TLRs) in the lungs of an experimental sepsis mouse model
Background: Sepsis is a condition characterized by high mortality rates and often accompanied by multiple-organ dysfunction. During sepsis, respiratory system may be affected and possibly result in acute respiratory distress syndrome (ARDS). Toll-like receptors (TLRs), as a first line defense against invading pathogens, seem to be highly expressed in septic states. Therefore, expression of TLRs in the lungs of a sepsis animal model could indicate the involvement of the respiratory system and appear as a severity index of the clinical course. Materials and methods: A total of 72 C57BL/6J mice, aged 12–14 weeks, were studied. The animals were divided into 3 sepsis (S) groups (24h, 48h and 72h) and 3 control (C) groups (24h, 48h and 72h), each consisting of 12 mice. The S-groups were subjected to cecal ligation and puncture (CLP) while the C-groups had a sham operation performed. Blood samples were drawn from all groups. Total blood count analysis was performed along with the measurement of certain biochemical markers. Additionally, lung tissues were harvested and the expression of TLRs, namely TLR 2, TLR 3, TLR 4 and TLR 7 were evaluated by means of immunofluorescence (IF) and qRT-PCR (quantitative-Polymerase Chain Reaction). Statistical analysis was performed by using one-way ANOVA followed by student t-test. Results were considered statistically significant when p<0.05. Results: WBCs and lymphocytes were decreased in all S-groups compared to the corresponding C-groups (p<0.05), while RBCs showed a gradual decline in S-groups with the lowest levels appearing in the S72 group. Only, monocytes were higher in S-groups, especially between S48-C48 (p<0.05) and S72-C72 (p<0.05). Creatinine, IL-10 and IL-6 levels were significantly increased in the S-groups compared to the corresponding C-groups (S24 vs C24, S48 vs C48 and S72 vs C72, p<0.05). IF showed that expression of TLRs 2, 3, 4 and 7 was increased in all S-groups compared to the time-adjusted C-groups (p<0.05). Similarly, qRT-PCR revealed that expression of all TLRs was higher in all S-groups compared to their respective C-groups in both lungs and intestine (p<0.05). Comparing lung and intestinal tissues from S-groups, TLRs 2 and 4 were found increased in the lung at 24, 48 and 72 hours (p<0.05), whereas TLR 3 was higher in the intestine at all time points examined (p<0.05). Finally, TLR 7 levels were significantly higher in the intestinal tissues at 24 hours (p<0.0001), while lungs predominated at 48 hours (p<0.0001). Conclusion: TLRs seem to be highly expressed in the lungs of septic mice, therefore suggesting a potential role in the pathogenesis of ARDS during sepsis. While more studies need to be conducted in order to completely understand the underlying mechanisms, TLRs may represent a promising target for establishing novel therapeutic strategies in the treatment of sepsis. © 2017 Bakopoulos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Return of the Tbx5; lineage-tracing reveals ventricular cardiomyocyte-like precursors in the injured adult mammalian heart
The single curative measure for heart failure patients is a heart transplantation, which is limited due to a shortage of donors, the need for immunosuppression and economic costs. Therefore, there is an urgent unmet need for identifying cell populations capable of cardiac regeneration that we will be able to trace and monitor. Injury to the adult mammalian cardiac muscle, often leads to a heart attack through the irreversible loss of a large number of cardiomyocytes, due to an idle regenerative capability. Recent reports in zebrafish indicate that Tbx5a is a vital transcription factor for cardiomyocyte regeneration. Preclinical data underscore the cardioprotective role of Tbx5 upon heart failure. Data from our earlier murine developmental studies have identified a prominent unipotent Tbx5-expressing embryonic cardiac precursor cell population able to form cardiomyocytes, in vivo, in vitro and ex vivo. Using a developmental approach to an adult heart injury model and by employing a lineage-tracing mouse model as well as the use of single-cell RNA-seq technology, we identify a Tbx5-expressing ventricular cardiomyocyte-like precursor population, in the injured adult mammalian heart. The transcriptional profile of that precursor cell population is closer to that of neonatal than embryonic cardiomyocyte precursors. Tbx5, a cardinal cardiac development transcription factor, lies in the center of a ventricular adult precursor cell population, which seems to be affected by neurohormonal spatiotemporal cues. The identification of a Tbx5-specific cardiomyocyte precursor-like cell population, which is capable of dedifferentiating and potentially deploying a cardiomyocyte regenerative program, provides a clear target cell population for translationally-relevant heart interventional studies. © 2023, The Author(s)
