880 research outputs found

    On-orbit assembly using superquadric potential fields

    Get PDF
    The autonomous on-orbit assembly of a large space structure is presented using a method based on superquadric artificial potential fields. The final configuration of the elements which form the structure is represented as the minimum of some attractive potential field. Each element of the structure is then considered as presenting an obstacle to the others using a superquadric potential field attached to the body axes of the element. A controller is developed which ensures that the global potential field decreases monotonically during the assembly process. An error quaternion representation is used to define both the attractive and superquadric obstacle potentials allowing the final configuration of the elements to be defined through both relative position and orientation. Through the use of superquadric potentials, a wide range of geometric objects can be represented using a common formalism, while collision avoidance can make use of both translational and rotation maneuvers to reduce total maneuver cost for the assembly process

    Evaluating Thermal Comfort and Overheating Risks in A Social Housing Prototype: As-Built Versus Retrofit Scenarios

    Get PDF
    Climate change has highlighted the importance of thermal comfort and its health-related outcomes, particularly for the most vulnerable members of society living in social housing. Due to their vulnerable living conditions, low-income people are more exposed to negative outcomes of overheating and cold indoor temperatures in buildings. Previous studies suggest that there is a significant risk of overheating in retrofitted buildings both for the current and future weather scenarios. The UK government has introduced new building regulations to assess and limit the risk of overheating in new buildings; however, there is still a need to assess and improve conditions for existing and retrofitted properties. This study aims to evaluate the effect of retrofit strategies on thermal comfort and the risk of overheating in social housing under current and future climatic conditions. A typical case study building was simulated in DesignBuilder to assess thermal comfort conditions for upgraded building fabric to Part L of the UK building regulations and Passive House standards. The summer results were analyzed according to CIBSE TM59 while the Predicted Mean Vote index (PMV) was used for winter analysis. Findings revealed that the south-facing bedrooms are most exposed to overheating. Risk of overheating significantly increased for the future weather scenarios by up to 10 times while winter thermal comfort improved for the retrofitted scenarios

    Channel Secondary Random Process for Robust Secret Key Generation

    Get PDF
    The broadcast nature of wireless communications imposes the risk of information leakage to adversarial users or unauthorized receivers. Therefore, information security between intended users remains a challenging issue. Most of the current physical layer security techniques exploit channel randomness as a common source between two legitimate nodes to extract a secret key. In this paper, we propose a new simple technique to generate the secret key. Specifically, we exploit the estimated channel to generate a secondary random process (SRP) that is common between the two legitimate nodes. We compare the estimated channel gain and phase to a preset threshold. The moving differences between the locations at which the estimated channel gain and phase exceed the threshold are the realization of our SRP. We simulate an orthogonal frequency division multiplexing (OFDM) system and show that our proposed technique provides a drastic improvement in the key bit mismatch rate (BMR) between the legitimate nodes when compared to the techniques that exploit the estimated channel gain or phase directly. In addition to that, the secret key generated through our technique is longer than that generated by conventional techniques

    Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles

    Get PDF
    This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved

    Delocalized states in three-terminal superconductor-semiconductor nanowire devices

    Full text link
    We fabricate three-terminal hybrid devices with a nanowire segment proximitized by a superconductor, and with two tunnel probe contacts on either side of that segment. We perform simultaneous tunneling measurements on both sides. We identify some states as delocalized above-gap states observed on both ends, and some states as localized near one of the tunnel barriers. Delocalized states can be traced from zero to finite magnetic fields beyond 0.5 T. In the parameter regime of delocalized states, we search for correlated subgap resonances required by the Majorana zero mode hypothesis. While both sides exhibit ubiquitous low-energy features at high fields, no correlation is inferred. Simulations using a one-dimensional effective model suggest that delocalized states may belong to lower one-dimensional subbands, while the localized states originate from higher subbands. To avoid localization in higher subbands, disorder may need to be further reduced to realize Majorana zero modes.Comment: Original data available at https://zenodo.org/record/395824

    Nanobiopesticides: Silica nanoparticles with spiky surfaces enable dual adhesion and enhanced performance

    Get PDF
    Biopesticides, such as spinosad, are a new-generation of ecofriendly pesticides in livestock industry. However, spinosad suffers from short duration of effectiveness and low potency in field conditions. Herein we report the development of a new nanospinosad design with dual adhesion and protection functions. Silica nanoparticles with spiky nanotopography loaded with spinosad possess rough surfaces. When applied topically, this nanospinosad formulation exhibited enhanced adhesion to both cattle hair and pest surface. The dual adhesion property led to significantly higher pest mortality toward tick (Rhipicephalus microplus, an ectoparasite) than a nanospinosad formulation using nanoparticles with smooth surface and a benchmark commercial product. The adhesion performance was further quantitatively measured using rainfastness test. Moreover, solar radiation test revealed that the nanospinosad exhibited >10 times higher photostability over the commercial product. This work paves the way toward the development of high performance nanobiopesticides for sustainable agricultural applications

    Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study

    Get PDF
    Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles
    corecore