5,720 research outputs found
Implications of non-feasible transformations among icosahedral orbitals
The symmetric group that permutes the six five-fold axes of an
icosahedron is introduced to go beyond the simple rotations that constitute the
icosahedral group . Owing to the correspondence , the
calculation of the Coulomb energies for the icosahedral configurations
based on the sequence can be brought
to bear on Racah's classic theory for the atomic d shell based on . Among the elements of is the kaleidoscope
operator that rotates the weight space of SO(5) by . Its use
explains some puzzling degeneracies in d^3 involving the spectroscopic terms
^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5,
99. Revtex, 1 ps figur
New methodology for assessing the probability of contaminating Mars
Methodology is proposed to assess the probability that the planet Mars will be contaminated by terrestrial microorganisms aboard a spacecraft. The present NASA methods are extended to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Different types of microbial release are distinguished, and for each release mechanism a probability of growth is computed. Using this new methodology, an assessment was carried out for the 1975 Viking landings on Mars. The resulting probability of contamination for each Viking lander is 6 x 10 to the -6 power, and is amenable to revision as additional information becomes available
Assessment of the probability of contaminating Mars
New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth
Cold atoms near superconductors: Atomic spin coherence beyond the Johnson noise limit
We report on the measurement of atomic spin coherence near the surface of a
superconducting niobium wire. As compared to normal conducting metal surfaces,
the atomic spin coherence is maintained for time periods beyond the Johnson
noise limit. The result provides experimental evidence that magnetic near field
noise near the superconductor is strongly suppressed. Such long atomic spin
coherence times near superconductors open the way towards the development of
coherently coupled cold atom / solid state hybrid quantum systems with
potential applications in quantum information processing and precision force
sensing.Comment: Major revisions of the text for submission to New Journal of Physics
8 pages, 4 figure
Quantum reflection of ultracold atoms from thin films, graphene, and semiconductor heterostructures
We show that thin dielectric films can be used to enhance the performance of
passive atomic mirrors by enabling quantum reflection probabilities of over 90%
for atoms incident at velocities ~1 mm/s, achieved in recent experiments. This
enhancement is brought about by weakening the Casimir-Polder attraction between
the atom and the surface, which induces the quantum reflection. We show that
suspended graphene membranes also produce higher quantum reflection
probabilities than bulk matter. Temporal changes in the electrical resistance
of such membranes, produced as atoms stick to the surface, can be used to
monitor the reflection process, non-invasively and in real time. The resistance
change allows the reflection probability to be determined purely from
electrical measurements without needing to image the reflected atom cloud
optically. Finally, we show how perfect atom mirrors may be manufactured from
semiconductor heterostructures, which employ an embedded two-dimensional
electron gas to tailor the atom-surface interaction and so enhance the
reflection by classical means.Comment: 8 pages, 4 figure
Geometric scaling in the spectrum of an electron captured by a stationary finite dipole
We examine the energy spectrum of a charged particle in the presence of a
{\it non-rotating} finite electric dipole. For {\emph{any}} value of the dipole
moment above a certain critical value p_{\mathrm{c}}$ an infinite series of
bound states arises of which the energy eigenvalues obey an Efimov-like
geometric scaling law with an accumulation point at zero energy. These
properties are largely destroyed in a realistic situation when rotations are
included. Nevertheless, our analysis of the idealised case is of interest
because it may possibly be realised using quantum dots as artificial atoms.Comment: 5 figures; references added, outlook section reduce
Analytic Treatment of Positronium Spin Splittings in Light-Front QED
We study the QED bound-state problem in a light-front hamiltonian approach.
Starting with a bare cutoff QED Hamiltonian, , with matrix elements
between free states of drastically different energies removed, we perform a
similarity transformation that removes the matrix elements between free states
with energy differences between the bare cutoff, , and effective
cutoff, \lam (\lam < \Lam). This generates effective interactions in the
renormalized Hamiltonian, . These effective interactions are derived
to order in this work, with . is renormalized
by requiring it to satisfy coupling coherence. A nonrelativistic limit of the
theory is taken, and the resulting Hamiltonian is studied using bound-state
perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the
limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow
\infty, is taken. This upper bound on \lam^2 places the effects of
low-energy (energy transfer below \lam) emission in the effective
interactions in the sector. This lower bound on \lam^2
insures that the nonperturbative scale of interest is not removed by the
similarity transformation. As an explicit example of the general formalism
introduced, we show that the Hamiltonian renormalized to reproduces
the exact spectrum of spin splittings, with degeneracies dictated by rotational
symmetry, for the ground state through . The entire calculation is
performed analytically, and gives the well known singlet-triplet ground state
spin splitting of positronium, . We discuss remaining
corrections other than the spin splittings and how they can be treated in
calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining
corrections added, title changed, error in older version corrected, cutoff
placed in a windo
Trapping of ultra-cold atoms with the magnetic field of vortices in a thin film superconducting micro-structure
We store and control ultra-cold atoms in a new type of trap using magnetic
fields of vortices in a high temperature superconducting micro-structure. This
is the first time ultra-cold atoms have been trapped in the field of magnetic
flux quanta. We generate the attractive trapping potential for the atoms by
combining the magnetic field of a superconductor in the remanent state with
external homogeneous magnetic fields. We show the control of crucial atom trap
characteristics such as an efficient intrinsic loading mechanism, spatial
positioning of the trapped atoms and the vortex density in the superconductor.
The measured trap characteristics are in good agreement with our numerical
simulations.Comment: 4pages, comments are welcom
Addition theorems for spin spherical harmonics. II Results
Based on the results of part I, we obtain the general form of the addition
theorem for spin spherical harmonics and give explicit results in the cases
involving one spin- and one spin- spherical harmonics with ,
1, 3/2, and , 1. We obtain also a fully general addition theorem for
one scalar and one tensor spherical harmonic of arbitrary rank. A variety of
bilocal sums of ordinary and spin spherical harmonics are given in explicit
form, including a general explicit expression for bilocal spherical harmonics
- …