98 research outputs found

    Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques

    Get PDF
    In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate.Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten.Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase.Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness

    Parallels between Pathogens and Gluten Peptides in Celiac Sprue

    Get PDF
    Pathogens are exogenous agents capable of causing disease in susceptible organisms. In celiac sprue, a disease triggered by partially hydrolyzed gluten peptides in the small intestine, the offending immunotoxins cannot replicate, but otherwise have many hallmarks of classical pathogens. First, dietary gluten and its peptide metabolites are ubiquitous components of the modern diet, yet only a small, genetically susceptible fraction of the human population contracts celiac sprue. Second, immunotoxic gluten peptides have certain unusual structural features that allow them to survive the harsh proteolytic conditions of the gastrointestinal tract and thereby interact extensively with the mucosal lining of the small intestine. Third, they invade across epithelial barriers intact to access the underlying gut-associated lymphoid tissue. Fourth, they possess recognition sequences for selective modification by an endogenous enzyme, transglutaminase 2, allowing for in situ activation to a more immunotoxic form via host subversion. Fifth, they precipitate a T cell–mediated immune reaction comprising both innate and adaptive responses that causes chronic inflammation of the small intestine. Sixth, complete elimination of immunotoxic gluten peptides from the celiac diet results in remission, whereas reintroduction of gluten in the diet causes relapse. Therefore, in analogy with antibiotics, orally administered proteases that reduce the host's exposure to the immunotoxin by accelerating gluten peptide destruction have considerable therapeutic potential. Last but not least, notwithstanding the power of in vitro methods to reconstitute the essence of the immune response to gluten in a celiac patient, animal models for the disease, while elusive, are likely to yield fundamentally new systems-level insights

    From labor to trader: Opinion elicitation via online crowds as a market

    No full text
    We often care about people's degrees of belief about certain events: e.g. causality between an action and the outcomes, odds distribution among the outcome of a horse race and so on. It is well recognized that the best form to elicit opinion from human is probability distribution instead of simple voting, because the form of distribution retains the delicate information that an opinion expresses. In the past, opinion elicitation has relied on experts, who are expensive and not always available. More recently, crowdsourcing has gained prominence as an inexpensive way to get a great deal of human input. However, traditional crowdsourcing has primarily focused on issuing very simple (e.g. binary decision) tasks to the crowd. In this paper, we study how to use crowds for Opinion Elicitation. There are three major challenges to eliciting opinion information in the form of probability distributions: how to measure the quality of distribution; how to aggregate the distributions; and, how to strategically implement such a system. To address these challenges, we design and implement COPE Crowd-powered OPinion Elicitation market. COPE models crowdsourced work as a trading market, where the "workers" behave like "traders" to maximize their profit by presenting their opinion. Among the innovative features in this system, we design COPE updating to combine the multiple elicited distributions following a Bayesian scheme. Also to provide more flexibility while running COPE, we propose a series of efficient algorithms and a slope based strategy to manage the ending condition of COPE. We then demonstrate the implementation of COPE and report experimental results running on real commercial platform to demonstrate the practical value of this system. © 2014 ACM
    corecore