8,810 research outputs found

    A repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism

    Full text link
    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple non-equilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.Comment: 4 pages, 2 figure

    Simply connected projective manifolds in characteristic p>0p>0 have no nontrivial stratified bundles

    Full text link
    We show that simply connected projective manifolds in characteristic p>0p>0 have no nontrivial stratified bundles. This gives a positive answer to a conjecture by D. Gieseker. The proof uses Hrushovski's theorem on periodic points.Comment: 16 pages. Revised version contains a more general theorem on torsion points on moduli, together with an illustration in rank 2 due to M. Raynaud. Reference added. Last version has some typos corrected. Appears in Invent.math

    Aharonov-Bohm oscillations in a mesoscopic ring with a quantum dot

    Full text link
    We present an analysis of the Aharonov-Bohm oscillations for a mesoscopic ring with a quantum dot inserted in one of its arms. It is shown that microreversibility demands that the phase of the Aharonov-Bohm oscillations changes {\it abruptly} when a resonant level crosses the Fermi energy. We use the Friedel sum rule to discuss the conservation of the parity of the oscillations at different conductance peaks. Our predictions are illustrated with the help of a simple one channel model that permits the variation of the potential landscape along the ring.Comment: 11 pages, Revtex style, 3 figures under request. Submitted to Phys. Rev. B (rapid communications

    Randomized Benchmarking of Quantum Gates

    Full text link
    A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.Comment: 13 page

    Quantum information processing with trapped ions

    Full text link
    Experiments directed towards the development of a quantum computer based on trapped atomic ions are described briefly. We discuss the implementation of single qubit operations and gates between qubits. A geometric phase gate between two ion qubits is described. Limitations of the trapped-ion method such as those caused by Stark shifts and spontaneous emission are addressed. Finally, we describe a strategy to realize a large-scale device.Comment: Article submitted by D. J. Wineland ([email protected]) for proceeding of the Discussion Meeting on Practical Realisations of Quantum Information Processing, held at the Royal Society, Nov. 13,14, 200

    Experimental demonstration of a technique to generate arbitrary quantum superposition states

    Get PDF
    Using a single, harmonically trapped 9^9Be+^+ ion, we experimentally demonstrate a technique for generation of arbitrary states of a two-level particle confined by a harmonic potential. Rather than engineering a single Hamiltonian that evolves the system to a desired final sate, we implement a technique that applies a sequence of simple operations to synthesize the state

    Emergency Portasystemic Shunting in Cirrhotics With Bleeding Varices — A Comparison of Portacaval and Mesocaval Shunts

    Get PDF
    Despite the best conservative measures available for the control of major variceal hemorrhage, some patients either continue to bleed, or rebleed early, and require emergency surgery. One hundred patients with cirrhosis and uncontrolled bleeding were treated with emergency portasystemic shunts between 1968 and 1983. Fifty eight patients had end-to-side portacaval shunts and 42 had Dacron interposition mesocaval shunts. Both groups were comparable with respect to age, sex and prevalence of alcoholism. There was an increased severity of liver disease as assessed by Child's class in the mesocaval group of patients
    • …
    corecore