25 research outputs found

    The RNA Editing Pattern of cox2 mRNA Is Affected by Point Mutations in Plant Mitochondria

    Get PDF
    The mitochondrial transcriptome from land plants undergoes hundreds of specific C-to-U changes by RNA editing. These events are important since most of them occur in the coding region of mRNAs. One challenging question is to understand the mechanism of recognition of a selected C residue (editing sites) on the transcript. It has been reported that a short region surrounding the target C forms the cis-recognition elements, but individual residues on it do not play similar roles for the different editing sites. Here, we studied the role of the −1 and +1 nucleotide in wheat cox2 editing site recognition using an in organello approach. We found that four different recognition patterns can be distinguished: (a) +1 dependency, (b) −1 dependency, (c) +1/−1 dependency, and (d) no dependency on nearest neighbor residues. A striking observation was that whereas a 23 nt cis region is necessary for editing, some mutants affect the editing efficiency of unmodified distant sites. As a rule, mutations or pre-edited variants of the transcript have an impact on the complete set of editing targets. When some Cs were changed into Us, the remaining editing sites presented a higher efficiency of C-to-U conversion than in wild type mRNA. Our data suggest that the complex response observed for cox2 mRNA may be a consequence of the fate of the transcript during mitochondrial gene expression

    Boronate ligands in materials: Determining their local environment by using a combination of IR/solid-state NMR spectroscopies and DFT calculations

    No full text
    Boronic acids (R-B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)3 -) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9-B(OH) 3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ( 1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave - GIPAW - method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1HNMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks. Boronate ligands in materials: A combined experimental/computational approach is used to define the IR and NMR spectroscopic signatures of boronate ligands in the solid state. OH stretching frequencies and 1H chemical shifts can now be related to the local environments around the OH groups (see figure). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    RNA editing in mitochondrial trans-introns is required for splicing

    Get PDF
    In plant mitochondria, gene expression of translatable mRNAs is a complex process with two critical steps, RNA editing and splicing. We studied the role of RNA editing on non-coding regions of the mat-r-nad1e-nad5c transcript from wheat mitochondria. This RNA contains two trans-introns, 3'-nad1-I4 and 3'-nad5-I2, involved in different trans-splicing events, ensuring the association of nad1d-nad1e and nad5b-nad5c exons from nad1 and nad5 mRNAs respectively. The C-to-U editing changes studied here affect homologous positions on 3'-nad1-I4 and 3'-nad5-I2. It is proposed that these base changes are necessary to place an Adenosine residue in a bulging conformation characteristic of domain VI (D6) from group II introns. In this work, we investigated the role of RNA editing events on 3'-nad1-I4 and 3'-nad5-I2 in the trans-splicing process using in vivo and in organello approaches. When the branched intermediates formed during the splicing process were analyzed, the C residues from D6 intron domains from 3'-nad1-I4 and 3'-nad5-I2 were found changed to U, suggesting that RNA editing of these residues could be mandatory for splicing. This assumption was tested by expressing recombinant mat-r-nad1e transgenes introduced into mitochondria by electroporation. Mutation of the editing target residue dramatically affected trans-splicing. Interestingly, the exon joining efficiency was not recovered by compensatory mutations, suggesting that the role of RNA editing is not confined to the restoration of the secondary structure of domain D6 of the intron. Our results strongly support the hypothesis that RNA editing in trans-introns precedes maturation, and is required for the splicing reaction. In addition, this is the first report using an in organello approach to study the trans-splicing process, opening the way to future studies of this peculiar mechanism
    corecore