121 research outputs found

    Spin configurations in hard-soft coupled bilayer systems: from rigid magnet to exchange spring transitions

    Full text link
    We investigate equilibrium properties of an exchange-spring magnetic system constituted of a soft layer (e.g. Fe) of a given thickness on top of a hard magnetic layer (e.g. FePt). The magnetization profile M(z) as a function of the atomic position ranging from the bottom of the hard layer to the top of the soft layer is obtained in two cases with regard to the hard layer: i) in the case of a rigid interface (the FePt layer is a single layer), the profile is obtained analytically as the exact solution of a sine-Gordon equation with Cauchy's boundary conditions. Additional numerical simulations also confirm this result. Asymptotic expressions of M(z) show a linear behavior near the bottom and the top of the soft layer. In addition, a critical value of the number of atomic planes in the soft layer, that is necessary for the onset of spin deviations, is obtained in terms of the anisotropy and exchange coupling between the adjacent plane in the soft layer. ii) in the case of a relaxed interface (the FePt layer is a multilayer), the magnetization profile is obtained numerically for various Fe and FePt films thicknesses and applied field.Comment: 10 pages, 9 figures, PRB submitted (12-07-2010

    Are fathers’ rearing histories associated with their involvement in childrearing? A Peruvian study

    Get PDF
    This study compares father involvement, relative to the mother, in a group of Peruvian families with preschool age children. We have also sought to understand if father’s rearing history and sociodemographic characteristics are predictors of his own involvement in child related activities. Two hundred and six families participated in the study. Results showed that mothers were more involved in direct and indirect care, and fathers tended to be more involved in play. Teaching/discipline and outdoor leisure activities were shared. The models tested for paternal involvement in direct, indirect care, and outdoor leisure were significant. Father´s rearing history was a main predictor of direct care and outdoor leisure. Fathers’ perceptions of their own mothers’ care were negatively associated with their involvement in direct care; and their perceptions of their own fathers’ overprotection/control were negatively associated with fathers’ involvement in outdoor leisure. Results are discussed based on stereotypical gender-based role division in childrearing, and the modeling and compensatory hypotheses.info:eu-repo/semantics/publishedVersio

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction

    Adiabatic Formation of Rydberg Crystals with Chirped Laser Pulses

    Full text link
    Ultracold atomic gases have been used extensively in recent years to realize textbook examples of condensed matter phenomena. Recently, phase transitions to ordered structures have been predicted for gases of highly excited, 'frozen' Rydberg atoms. Such Rydberg crystals are a model for dilute metallic solids with tunable lattice parameters, and provide access to a wide variety of fundamental phenomena. We investigate theoretically how such structures can be created in four distinct cold atomic systems, by using tailored laser-excitation in the presence of strong Rydberg-Rydberg interactions. We study in detail the experimental requirements and limitations for these systems, and characterize the basic properties of small crystalline Rydberg structures in one, two and three dimensions.Comment: 23 pages, 10 figures, MPIPKS-ITAMP Tandem Workshop, Cold Rydberg Gases and Ultracold Plasmas (CRYP10), Sept. 6-17, 201

    Ordered La0.7Sr0.3MnO3 nanohole arrays fabricated on a nanoporous alumina template by pulsed laser ablation

    Get PDF
    Highly ordered nanohole arrays of [Formula: see text] manganite have been synthesized using pulsed laser deposition on nanoporous alumina template. Their structure and phase formation were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). The magnetic measurements were performed with respect to temperature and field and exhibit a ferromagnetic to paramagnetic transition at 284 K. In addition, the temperature dependence of electrical resistance was measured at different magnetic fields and an insulating phase throughout all the temperatures was observed. The low temperature ferromagnetic insulating state is discussed by the presence of a canted ferromagnetic state induced by the nanoholes. The present work shows the feasibility of combining both the nanoporous alumina template and pulsed laser ablation for the fabrication of perovskite manganite nanohole arrays which can also be extended to fabricate other multicomponent oxide nanohole materials.M K is thankful to FCT, Portugal for the Grant No. SFRH/ BPD/75110/2010. The authors acknowledged the financial supports from the projects NORTE-07–0124-FEDER000070, CERN/FIS-NUC/0004/2015 and IF/00686/2014

    Copper-Dependent Trafficking of the Ctr4-Ctr5 Copper Transporting Complex

    Get PDF
    In Schizosaccharomyces pombe, copper uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Copper-induced differential subcellular localization may play a critical role with respect to fine tuning the number of Ctr4 and Ctr5 molecules at the cell surface.We have developed a bimolecular fluorescence complementation (BiFC) assay to analyze protein-protein interactions in vivo in S. pombe. The assay is based on the observation that N- and C-terminal subfragments of the Venus fluorescent protein can reconstitute a functional fluorophore only when they are brought into tight contact. Wild-type copies of the ctr4(+) and ctr5(+) genes were inserted downstream of and in-frame with the nonfluorescent C-terminal (VC) and N-terminal (VN) coding fragments of Venus, respectively. Co-expression of Ctr4-VC and Ctr5-VN fusion proteins allowed their detection at the plasma membrane of copper-limited cells. Similarly, cells co-expressing Ctr4-VN and Ctr4-VC in the presence of Ctr5-Myc(12) displayed a fluorescence signal at the plasma membrane. In contrast, Ctr5-VN and Ctr5-VC co-expressed in the presence of Ctr4-Flag(2) failed to be visualized at the plasma membrane, suggesting a requirement for a combination of two Ctr4 molecules with one Ctr5 molecule. We found that plasma membrane-located Ctr4-VC-Ctr5-VN fluorescent complexes were internalized when the cells were exposed to high levels of copper. The copper-induced internalization of Ctr4-VC-Ctr5-VN complexes was not dependent on de novo protein synthesis. When cells were transferred back from high to low copper levels, there was reappearance of the BiFC fluorescent signal at the plasma membrane.These findings reveal a copper-dependent internalization and recycling of the heteromeric Ctr4-Ctr5 complex as a function of copper availability

    Expression of apoptosis regulatory proteins of the Bcl-2 family and p53 in primary resected non-small-cell lung cancer

    Get PDF
    Proteins of the Bcl-2 family as well as p53 are important regulators of apoptosis. Alterations in the expression of these proteins can contribute to the formation of cancer, as well as influence tumour response to chemo- and radiotherapy. We used antibodies specific for the human Bcl-2, Mcl-1, Bax, Bak and p53 proteins to examine the expression of these apoptosis-regulating genes in 49 archival specimens of patients with radically resected non-small-cell lung cancer (NSCLC). Tumour cells containing immunostaining for the antiapoptotic proteins Bcl-2 and Mcl-1 were present in 31% and 58% of the cases evaluated, respectively, whereas immunopositivity for the proapoptotic proteins Bax and Bak was found in 47% and 58% of the samples. p53 immunopositivity was detected in 61% of the samples. The expression of Bcl-2 and p53 and the expression of Mcl-1 and Bax showed a positive association (P= 0.02 and P= 0.06 respectively), whereas the expression of Bax was inversely related to p53 (P= 0.008). The expression of Bcl-2 had a negative influence on relapse-free survival in this population of primary resected NSCLC patients (P= 0.02). The expression of p53 and Bcl-2 was significantly associated with metastasis-free survival (P< 0.01). Only patients with p53-positive tumours developed metastases during the follow-up period. Our results establish the frequent expression of the Bcl-2 family proteins Bcl-2, Mcl-1, Bax and Bak in NSCLC. It can be expected that Bcl-2 family members have no straightforward impact on clinical outcome in this disease because their interactions in the regulation of apoptosis are complex. © 1999 Cancer Research Campaig

    The Large Hadron-Electron Collider at the HL-LHC

    Get PDF
    The Large Hadron–Electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy-recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High-Luminosity Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron–proton and proton–proton operations. This report represents an update to the LHeC’s conceptual design report (CDR), published in 2012. It comprises new results on the parton structure of the proton and heavier nuclei, QCD dynamics, and electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics by extending the accessible kinematic range of lepton–nucleus scattering by several orders of magnitude. Due to its enhanced luminosity and large energy and the cleanliness of the final hadronic states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, this report contains a detailed updated design for the energy-recovery electron linac (ERL), including a new lattice, magnet and superconducting radio-frequency technology, and further components. Challenges of energy recovery are described, and the lower-energy, high-current, three-turn ERL facility, PERLE at Orsay, is presented, which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution, and calibration goals that arise from the Higgs and parton-density-function physics programmes. This paper also presents novel results for the Future Circular Collider in electron–hadron (FCC-eh) mode, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies
    corecore