116 research outputs found
Evaluation of a high-resolution regional climate simulation over Greenland
A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model’s performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere–snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations.Peer reviewe
Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging
Although optical absorption is strongly associated with the physiological status of biological tissue, existing high-resolution optical imaging modalities, including confocal microscopy, two-photon microscopy and optical coherence tomography, do not sense optical absorption directly. Furthermore, optical scattering prevents these methods from imaging deeper than ~1 mm below the tissue surface. Here we report functional photoacoustic microscopy (fPAM), which provides multiwavelength imaging of optical absorption and permits high spatial resolution beyond this depth limit with a ratio of maximum imaging depth to depth resolution greater than 100. Reflection mode, rather than orthogonal or transmission mode, is adopted because it is applicable to more anatomical sites than the others. fPAM is demonstrated with in vivo imaging of angiogenesis, melanoma, hemoglobin oxygen saturation (sO_2) of single vessels in animals and total hemoglobin concentration in humans
Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall
Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change
Evaluating Different Periodic Seasonal Time Series Model for Efficient Short-Term Wind Speed Prediction
The importance of wind speed predictions, which is the source for wind power, is in the focus of interest. Accurate predictions are crucial for the energy production. Developing short-term wind forecasts helps to increase the productivity of wind energy. Moreover, the energy supply can be optimized, by increasing the accuracy of wind speed predictions, particularly the feed-in of wind power. The wind speed forecasting approaches presented here use 10-minute data collected at several stations in Germany. An overview of different periodic and seasonal time series models are given. The seasonality that is modelled by some periodic base function is combined with a long memory process and heteroscedasticity. Therefore, an ARFIMA(p,d,q)-APARCH(P,Q) process is comprised and applied to the correlated residuals. In contrast to the classical Fourier functions, cubic B-splines are used to model the periodicity. Furthermore, a common time series model is provided and applied to the wind speed. The feature is a time-saving approach for modelling and predicting. Hence, we introduce an iteratively reweighted least squares and lasso method. The most important findings are forecasting enhancements up to six hours and a simple and fast estimation and prediction method
- …