3,671 research outputs found
Ice nucleation from aqueous NaCl droplets with and without marine diatoms
Ice formation in the atmosphere by homogeneous and heterogeneous nucleation is one of the least understood processes in cloud microphysics and climate. Here we describe our investigation of the marine environment as a potential source of atmospheric IN by experimentally observing homogeneous ice nucleation from aqueous NaCl droplets and comparing against heterogeneous ice nucleation from aqueous NaCl droplets containing intact and fragmented diatoms. Homogeneous and heterogeneous ice nucleation are studied as a function of temperature and water activity, <i>a</i><sub>w</sub>. Additional analyses are presented on the dependence of diatom surface area and aqueous volume on heterogeneous freezing temperatures, ice nucleation rates, &omega;<sub>het</sub>, ice nucleation rate coefficients, <i>J</i><sub>het</sub>, and differential and cumulative ice nuclei spectra, <i>k(T)</i> and <i>K(T)</i>, respectively. Homogeneous freezing temperatures and corresponding nucleation rate coefficients are in agreement with the water activity based homogeneous ice nucleation theory within experimental and predictive uncertainties. Our results confirm, as predicted by classical nucleation theory, that a stochastic interpretation can be used to describe the homogeneous ice nucleation process. Heterogeneous ice nucleation initiated by intact and fragmented diatoms can be adequately represented by a modified water activity based ice nucleation theory. A horizontal shift in water activity, &Delta;<i>a</i><sub>w, het</sub> = 0.2303, of the ice melting curve can describe median heterogeneous freezing temperatures. Individual freezing temperatures showed no dependence on available diatom surface area and aqueous volume. Determined at median diatom freezing temperatures for <i>a</i><sub>w</sub> from 0.8 to 0.99, &omega;<sub>het</sub><u>~</u>0.11<sup>+0.06</sup><sub>&minus;0.05</sub> s<sup>−1</sup>, <i>J</i><sub>het</sub><u>~</u>1.0<sup>+1.16</sup><sub>&minus;0.61</sub>&times;10<sup>4</sup> cm<sup>−2</sup> s<sup>−1</sup>, and <i>K</i><u>~</u>6.2<sup>+3.5</sup><sub>&minus;4.1</sub> &times;10<sup>4</sup> cm<sup>−2</sup>. The experimentally derived ice nucleation rates and nuclei spectra allow us to estimate ice particle production which we subsequently use for a comparison with observed ice crystal concentrations typically found in cirrus and polar marine mixed-phase clouds. Differences in application of time-dependent and time-independent analyses to predict ice particle production are discussed
Recommended from our members
Auditory Priming within and across Modalities: Evidence from Positron Emission Tomography
Previous neuroimaging studies of perceptual priming have reported priming-related decreases in the extrastriate cortex. However, because these experiments have used visual stimuli, it is unclear whether the observed decreases are associated specifically with some aspect of visual perceptual processing or with more general aspects of priming. We studied within-and cross-modality priming using an auditory word stem completion paradigm. Positron emission tomography (PET) images were obtained during stem completion and a fixation task. Within-modality auditory priming was associated with blood flow decreases in the extrastriate cortex (bilateral), medial/ right anterior prefrontal cortex, right angular gyrus, and precuneus. In cross-modality priming, the study list was presented visually, and subjects completed auditory word stems. Cross-modality priming was associated with trends for blood flow decreases in the left angular gyrus and increases in the medial/right anterior prefrontal cortex. Results thus indicate that reduced activity in the extrastriate cortex accompanies within-modality priming in both visual and auditory modalities.Psycholog
African-American patients with cancer Talking About Clinical Trials (TACT) with oncologists during consultations: evaluating the efficacy of tailored health messages in a randomised controlled trial—the TACT study protocol
Introduction Low rates of accrual of African-American (AA) patients with cancer to therapeutic clinical trials (CTs) represent a serious and modifiable racial disparity in healthcare that impedes the development of promising cancer therapies. Suboptimal physician–patient consultation communication is a barrier to the accrual of patients with cancer of any race, but communication difficulties are compounded with AA patients. Providing tailored health messages (THM) to AA patients and their physician about CTs has the potential to improve communication, lower barriers to accrual and ameliorate health disparities. Objective (1) Demonstrate the efficacy of THM to increase patient activation as measured by direct observation. (2) Demonstrate the efficacy of THM to improve patient outcomes associated with barriers to AA participation. (3) Explore associations among preconsultation levels of: (A) trust in medical researchers, (B) knowledge and attitudes towards CTs, (C) patient-family member congruence in decision-making, and (D) involvement/information preferences, and group assignment. Methods and analysis First, using established methods, we will develop THM materials. Second, the efficacy of the intervention is determined in a 2 by 2 factorial randomised controlled trial to test the effectiveness of (1) providing 357 AA patients with cancer with THM with 2 different ‘depths’ of tailoring and (2) either providing feedback to oncologists about the patients\u27 trial THM or not. The primary analysis compares patient engaged communication in 4 groups preconsultation and postconsultation. Ethics and dissemination This study was approved by the Virginia Commonwealth University Institutional Review Board. To facilitate use of the THM intervention in diverse settings, we will convene ‘user groups’ at 3 major US cancer centres. To facilitate dissemination, we will post all materials and the implementation guide in publicly available locations
Continuum-plasma solution surrounding nonemitting spherical bodies
The classical problem of the interaction of a nonemitting spherical body with a zero mean-free-path continuum plasma is solved numerically in the full range of physically allowed free parameters (electron Debye length to body radius ratio, ion to electron temperature ratio, and body bias), and analytically in rigorously defined asymptotic regimes (weak and strong bias, weak and strong shielding, thin and thick sheath). Results include current-voltage characteristics as well as floating potential and capacitance, for both continuum and collisionless electrons. Our numerical computations show that for most combinations of physical parameters, there exists a closest asymptotic regime whose analytic solutions are accurate to 15% or better
The Peculiar Phase Structure of Random Graph Bisection
The mincut graph bisection problem involves partitioning the n vertices of a
graph into disjoint subsets, each containing exactly n/2 vertices, while
minimizing the number of "cut" edges with an endpoint in each subset. When
considered over sparse random graphs, the phase structure of the graph
bisection problem displays certain familiar properties, but also some
surprises. It is known that when the mean degree is below the critical value of
2 log 2, the cutsize is zero with high probability. We study how the minimum
cutsize increases with mean degree above this critical threshold, finding a new
analytical upper bound that improves considerably upon previous bounds.
Combined with recent results on expander graphs, our bound suggests the unusual
scenario that random graph bisection is replica symmetric up to and beyond the
critical threshold, with a replica symmetry breaking transition possibly taking
place above the threshold. An intriguing algorithmic consequence is that
although the problem is NP-hard, we can find near-optimal cutsizes (whose ratio
to the optimal value approaches 1 asymptotically) in polynomial time for
typical instances near the phase transition.Comment: substantially revised section 2, changed figures 3, 4 and 6, made
minor stylistic changes and added reference
Universality in solar flare and earthquake occurrence
Earthquakes and solar flares are phenomena involving huge and rapid releases
of energy characterized by complex temporal occurrence. By analysing available
experimental catalogs, we show that the stochastic processes underlying these
apparently different phenomena have universal properties. Namely both problems
exhibit the same distributions of sizes, inter-occurrence times and the same
temporal clustering: we find afterflare sequences with power law temporal
correlations as the Omori law for seismic sequences. The observed universality
suggests a common approach to the interpretation of both phenomena in terms of
the same driving physical mechanism
- …
