5,447 research outputs found
Ramp wave loading experiments driven by heavy ion beams: a feasibility study
A new design for heavy-ion beam driven ramp wave loading experiments is suggested and analyzed. The proposed setup utilizes the long stopping ranges and the variable focal spot geometry of the high-energy uranium beams available at the GSI Helmholtzzentrum für Schwerionenforschung and Facility for Antiproton and Ion Research accelerator centers in Darmstadt, Germany. The release wave created by ion beams can be utilized to create a planar ramp loading of various samples. In such experiments, the predicted high pressure amplitudes (up to 10 Mbar) and short timescales of compression (<10 ns) will allow to test the time-dependent material deformation at unprecedented extreme conditions
M-Theory Model-Building and Proton Stability
We study the problem of baryon stability in M theory, starting from realistic
four-dimensional string models constructed using the free-fermion formulation
of the weakly-coupled heterotic string. Suitable variants of these models
manifest an enhanced custodial gauge symmetry that forbids to all orders the
appearance of dangerous dimension-five baryon-decay operators. We exhibit the
underlying geometric (bosonic) interpretation of these models, which have a
orbifold structure similar, but not identical, to the class of
Calabi-Yau threefold compactifications of M and F theory investigated by Voisin
and Borcea. A related generalization of their work may provide a solution to
the problem of proton stability in M theory.Comment: 14 pages. Standard Late
Sum of Us: Strategyproof Selection from the Selectors
We consider directed graphs over a set of n agents, where an edge (i,j) is
taken to mean that agent i supports or trusts agent j. Given such a graph and
an integer k\leq n, we wish to select a subset of k agents that maximizes the
sum of indegrees, i.e., a subset of k most popular or most trusted agents. At
the same time we assume that each individual agent is only interested in being
selected, and may misreport its outgoing edges to this end. This problem
formulation captures realistic scenarios where agents choose among themselves,
which can be found in the context of Internet search, social networks like
Twitter, or reputation systems like Epinions.
Our goal is to design mechanisms without payments that map each graph to a
k-subset of agents to be selected and satisfy the following two constraints:
strategyproofness, i.e., agents cannot benefit from misreporting their outgoing
edges, and approximate optimality, i.e., the sum of indegrees of the selected
subset of agents is always close to optimal. Our first main result is a
surprising impossibility: for k \in {1,...,n-1}, no deterministic strategyproof
mechanism can provide a finite approximation ratio. Our second main result is a
randomized strategyproof mechanism with an approximation ratio that is bounded
from above by four for any value of k, and approaches one as k grows
Multiplexed DNA-Modified Electrodes
We report the use of silicon chips with 16 DNA-modified electrodes (DME chips) utilizing DNA-mediated charge transport for multiplexed detection of DNA and DNA-binding protein targets. Four DNA sequences were simultaneously distinguished on a single DME chip with 4-fold redundancy, including one incorporating a single base mismatch. These chips also enabled investigation of the sequence-specific activity of the restriction enzyme Alu1. DME chips supported dense DNA monolayer formation with high reproducibility, as confirmed by statistical comparison to commercially available rod electrodes. The working electrode areas on the chips were reduced to 10 μm in diameter, revealing microelectrode behavior that is beneficial for high sensitivity and rapid kinetic analysis. These results illustrate how DME chips facilitate sensitive and selective detection of DNA and DNA-binding protein targets in a robust and internally standardized multiplexed format
On the Complexity of Local Distributed Graph Problems
This paper is centered on the complexity of graph problems in the
well-studied LOCAL model of distributed computing, introduced by Linial [FOCS
'87]. It is widely known that for many of the classic distributed graph
problems (including maximal independent set (MIS) and -vertex
coloring), the randomized complexity is at most polylogarithmic in the size
of the network, while the best deterministic complexity is typically
. Understanding and narrowing down this exponential gap
is considered to be one of the central long-standing open questions in the area
of distributed graph algorithms. We investigate the problem by introducing a
complexity-theoretic framework that allows us to shed some light on the role of
randomness in the LOCAL model. We define the SLOCAL model as a sequential
version of the LOCAL model. Our framework allows us to prove completeness
results with respect to the class of problems which can be solved efficiently
in the SLOCAL model, implying that if any of the complete problems can be
solved deterministically in rounds in the LOCAL model, we can
deterministically solve all efficient SLOCAL-problems (including MIS and
-coloring) in rounds in the LOCAL model. We show
that a rather rudimentary looking graph coloring problem is complete in the
above sense: Color the nodes of a graph with colors red and blue such that each
node of sufficiently large polylogarithmic degree has at least one neighbor of
each color. The problem admits a trivial zero-round randomized solution. The
result can be viewed as showing that the only obstacle to getting efficient
determinstic algorithms in the LOCAL model is an efficient algorithm to
approximately round fractional values into integer values
Boolean versus continuous dynamics on simple two-gene modules
We investigate the dynamical behavior of simple modules composed of two genes
with two or three regulating connections. Continuous dynamics for mRNA and
protein concentrations is compared to a Boolean model for gene activity. Using
a generalized method, we study within a single framework different continuous
models and different types of regulatory functions, and establish conditions
under which the system can display stable oscillations. These conditions
concern the time scales, the degree of cooperativity of the regulating
interactions, and the signs of the interactions. Not all models that show
oscillations under Boolean dynamics can have oscillations under continuous
dynamics, and vice versa.Comment: 8 pages, 10 figure
Fouling mechanisms in constant flux crossflow ultrafiltration
Four fouling models due to Hermia (complete pore blocking, intermediate pore blocking, cake filtration and standard pore blocking), have long been used to describe membrane filtration and fouling in constant transmembrane pressure (ΔP) operation of membranes. A few studies apply these models to constant flux dead-end filtration systems. However, these models have not been reported for constant flux crossflow filtration, despite the frequent use of this mode of membrane operation in practical applications. We report derivation of these models for constant flux crossflow filtration. Of the four models, complete pore blocking and standard pore blocking were deemed inapplicable due to contradicting assumptions and relevance, respectively. Constant flux crossflow fouling experiments of dilute latex bead suspensions and soybean oil emulsions were conducted on commercial poly (ether sulfone) flat sheet ultrafiltration membranes to explore the models’ abilities to describe such data. A model combining intermediate pore blocking and cake filtration appeared to give the best agreement with the experimental data. Below the threshold flux, both the intermediate pore blocking model and the combined model fit the data well. As permeate flux approached and passed the threshold flux, the combined model was required for accurate fits. Based on this observation, a physical interpretation of the threshold flux is proposed: the threshold flux is the flux below which cake buildup is negligible and above which cake filtration becomes the dominant fouling mechanism
Understanding entanglement as resource: locally distinguishing unextendible product bases
It is known that the states in an unextendible product basis (UPB) cannot be
distinguished perfectly when the parties are restricted to local operations and
classical communication (LOCC). Previous discussions of such bases have left
open the following question: What entanglement resources are necessary and/or
sufficient for this task to be possible with LOCC? In this paper, I present
protocols which use entanglement more efficiently than teleportation to
distinguish certain classes of UPB's. The ideas underlying my approach to this
problem offer rather general insight into why entanglement is useful for such
tasks.Comment: Final, published version. Many revisions following very useful
suggestions of the referee have been added. In particular, Appendix A has
been completely rewritte
Online Admission Control and Embedding of Service Chains
The virtualization and softwarization of modern computer networks enables the
definition and fast deployment of novel network services called service chains:
sequences of virtualized network functions (e.g., firewalls, caches, traffic
optimizers) through which traffic is routed between source and destination.
This paper attends to the problem of admitting and embedding a maximum number
of service chains, i.e., a maximum number of source-destination pairs which are
routed via a sequence of to-be-allocated, capacitated network functions. We
consider an Online variant of this maximum Service Chain Embedding Problem,
short OSCEP, where requests arrive over time, in a worst-case manner. Our main
contribution is a deterministic O(log L)-competitive online algorithm, under
the assumption that capacities are at least logarithmic in L. We show that this
is asymptotically optimal within the class of deterministic and randomized
online algorithms. We also explore lower bounds for offline approximation
algorithms, and prove that the offline problem is APX-hard for unit capacities
and small L > 2, and even Poly-APX-hard in general, when there is no bound on
L. These approximation lower bounds may be of independent interest, as they
also extend to other problems such as Virtual Circuit Routing. Finally, we
present an exact algorithm based on 0-1 programming, implying that the general
offline SCEP is in NP and by the above hardness results it is NP-complete for
constant L.Comment: early version of SIROCCO 2015 pape
- …
