723 research outputs found
Climate fluctuations during the Holocene in NW Iberia: high and low latitude linkages
International audienceHigh resolution benthic foraminiferal oxygen and carbon stable isotopes (?18O, ?13C) from core EUGC-3B are used here to infer rapid climatic changes for the last 8500 yr in the Ría de Muros (NW Iberian Margin). Benthic foraminiferal ?18O and ?13C potentially register migrations in the position of the hydrographic front formed between two different intermediate water masses: Eastern North Atlantic Central Water of subpolar origin (ENACWsp), and subtropical origin (ENACWsp). The isotopic records have been compared with two well established North Atlantic marine Holocene paleoceanographic records from low (Sea Surface Temperatures anomalies off Cape Blanc, NW Africa) and high latitudes (Hematite Stained Grains percentage, subpolar North Atlantic). This comparison clearly demonstrates that there is a strong link between high- and low-latitude climatic perturbations at centennial-millennial time scales during the Holocene. Spectral analyses also points at a pole-to-equator propagation of the so-called 1500 yr cycles. Our results demonstrate that during the Holocene, the NW Iberian Margin has undergone a series of cold episodes which are likely triggered at high latitudes in the North Atlantic and are rapidly propagated towards lower latitudes. Conceivably, the propagation of these rapid climatic changes involves a shift of atmospheric and oceanic circulatory systems and so a migration of the hydrographical fronts and water masses all along the North Atlantic area
Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-species ion sources
Ongoing developments in laser-driven ion acceleration warrant appropriate modifications to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the diagnostic requirements associated to the particular and distinctive properties of laser-accelerated beams. Here we present an overview of recent developments by our group of the TPS diagnostic aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to facilitate discrimination between ions with same Z / A , a recursive differential filtering technique was implemented at the TPS detector in order to allow only one of the overlapping ion species to reach the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal electric plates design was envisaged, followed by its experimental demonstration. The design allows achieving high energy-resolution at high energies without sacrificing the lower energy part of the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly resolved, complete spectral characterization of the high-energy, multi-species ion beams
Scalability of GHZ and random-state entanglement in the presence of decoherence
We derive analytical upper bounds for the entanglement of generalized
Greenberger-Horne-Zeilinger states coupled to locally depolarizing and
dephasing environments, and for local thermal baths of arbitrary temperature.
These bounds apply for any convex quantifier of entanglement, and exponential
entanglement decay with the number of constituent particles is found. The
bounds are tight for depolarizing and dephasing channels. We also show that
randomly generated initial states tend to violate these bounds, and that this
discrepancy grows with the number of particles.Comment: 9 pages, 3 figure
Germinal Center Selection and Affinity Maturation Require Dynamic Regulation of mTORC1 Kinase
During antibody affinity maturation, germinal center (GC) B cells cycle between affinity-driven selection in the light zone (LZ) and proliferation and somatic hypermutation in the dark zone (DZ). Although selection of GC B cells is triggered by antigen-dependent signals delivered in the LZ, DZ proliferation occurs in the absence of such signals. We show that positive selection triggered by T cell help activates the mechanistic target of rapamycin complex 1 (mTORC1), which promotes the anabolic program that supports DZ proliferation. Blocking mTORC1 prior to growth prevented clonal expansion, whereas blockade after cells reached peak size had little to no effect. Conversely, constitutively active mTORC1 led to DZ enrichment but loss of competitiveness and impaired affinity maturation. Thus, mTORC1 activation is required for fueling B cells prior to DZ proliferation rather than for allowing cell-cycle progression itself and must be regulated dynamically during cyclic re-entry to ensure efficient affinity-based selection. During germinal center selection, signals from Tfh cells in the light zone dictate the extent of B cell proliferation in the dark zone. Ersching et al. (2017) show that Tfh help induces mTORC1 activation in light zone B cells, leading to cell growth that sustains the subsequent dark zone proliferative burst
SP-0489: HPV-transformation in the cervix and at non-cervical sites
Pla general d'un dels panells horitzontals sobre espais verds de Barcelona a l'exposició Ciutat. Barcelona projecta a l'Edifici Fòrum. Exposició sobre la planificació urbanística i arquitectònica de Barcelon
Selective Deuterium Ion Acceleration Using the Vulcan PW Laser
We report on the successful demonstration of selective acceleration of
deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy
petawatt laser. TNSA typically produces a multi-species ion beam that
originates from the intrinsic hydrocarbon and water vapor contaminants on the
target surface. Using the method first developed by Morrison, et al., an
ion beam with 99 deuterium ions and peak energy 14 MeV/nucleon is
produced with a 200 J, 700 fs, laser pulse by cryogenically
freezing heavy water (DO) vapor onto the rear surface of the target prior
to the shot. Within the range of our detectors (0-8.5), we find
laser-to-deuterium-ion energy conversion efficiency of 4.3 above 0.7
MeV/nucleon while a conservative estimate of the total beam gives a conversion
efficiency of 9.4.Comment: 5 pages, 5 figure
Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion
An epithermal neutron imager based on detecting alpha particles created by boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons below 0.1 eV, the fast neutrons register insignificantly in the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications
mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase
The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H+–adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid–sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.Damon Runyon Cancer Research FoundationMillennium Pharmaceuticals, Inc.American Lebanese Syrian Associated CharitiesHoward Hughes Medical Institut
3D facies architecture and dynamics of a beach barrier-lagoon complex (Ría de Vigo, Galicia, Spain)
Beamed neutron emission driven by laser accelerated light ions
Highly anisotropic, beam-like neutron emission with peak flux of the order of109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by sub-petawatt laser. The spatial prole of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ∼70°, with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p,n+p)1H and d(d,n)3He. Albeit in sufficient cross-section data are available for modelling, the observed anisotropy in the neutrons' spatial and spectral profiles are most likely related to the directionality and high energy of the projectile ions
- …
