4,947 research outputs found
A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system
An analytical method was developed for predicting minimum flow rates required to provide anti-ice protection with a porous leading edge fluid ice protection system. The predicted flow rates compare with an average error of less than 10 percent to six experimentally determined flow rates from tests in the NASA Icing Research Tunnel on a general aviation wing section
Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil
A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested
Recommended from our members
Towards a Theory of Practice: Critical Transdisciplinary Multiliteracies
About the book: Education institutions and organizations throughout the world are currently being held accountable for achieving and maintaining historically unmatched standards of academic quality and performance. Accreditation bodies; policy makers; boards of trustees; and teacher, parent, and student groups all place educational institutions and organizations under unprecedented accountability pressures. The aim of this volume is to explore and better understand how these pressures are impacting a broad range of social and cultural issues and, subsequently, how these issues impact student motivation and learnin
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
The Particle-In-Cell (PIC) method is widely used in relativistic particle
beam and laser plasma modeling. However, the PIC method exhibits numerical
instabilities that can render unphysical simulation results or even destroy the
simulation. For electromagnetic relativistic beam and plasma modeling, the most
relevant numerical instabilities are the finite grid instability and the
numerical Cherenkov instability. We review the numerical dispersion relation of
the electromagnetic PIC algorithm to analyze the origin of these instabilities.
We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm,
and then specialize to the Yee FDTD scheme. In particular, we account for the
manner in which the PIC algorithm updates and samples the fields and
distribution function. Temporal and spatial phase factors from solving
Maxwell's equations on the Yee grid with the leapfrog scheme are also
explicitly accounted for. Numerical solutions to the electrostatic-like modes
in the 1D dispersion relation for a cold drifting plasma are obtained for
parameters of interest. In the succeeding analysis, we investigate how the
finite grid instability arises from the interaction of the numerical 1D modes
admitted in the system and their aliases. The most significant interaction is
due critically to the correct represenation of the operators in the dispersion
relation. We obtain a simple analytic expression for the peak growth rate due
to this interaction.Comment: 25 pages, 6 figure
Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models
The study for lepton flavor violation combined with the neutrino oscillation
may provide more information about the lepton flavor structure of the grand
unified theory. In this paper, we study two lepton flavor violation processes,
and , in the context of supersymmetric SO(10)
grand unified models. We find the two processes are both of phenomenological
interest. In particular the latter may be important in some supersymmetric
parameter space where the former is suppressed. Thus, Z-dacay may offer another
chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure
Explicit SO(10) Supersymmetric Grand Unified Model for the Higgs and Yukawa Sectors
A complete set of fermion and Higgs superfields is introduced with
well-defined SO(10) properties and U(1) x Z_2 x Z_2 family charges from which
the Higgs and Yukawa superpotentials are constructed. The structures derived
for the four Dirac fermion and right-handed Majorana neutrino mass matrices
coincide with those previously obtained from an effective operator approach.
Ten mass matrix input parameters accurately yield the twenty masses and mixings
of the quarks and leptons with the bimaximal atmospheric and solar neutrino
vacuum solutions favored in this simplest version.Comment: Published version appearing in PRL in which small modifications to
original submission and a paragraph concerning proton decay appea
- …
