2,532 research outputs found
Notions of controllability for quantum mechanical systems
In this paper, we define four different notions of controllability of
physical interest for multilevel quantum mechanical systems. These notions
involve the possibility of driving the evolution operator as well as the state
of the system. We establish the connections among these different notions as
well as methods to verify controllability.
The paper also contains results on the relation between the controllability
in arbitrary small time of a system varying on a compact transformation Lie
group and the corresponding system on the associated homogeneous space. As an
application, we prove that, for the system of two interacting spin 1/2
particles, not every state transfer can be obtained in arbitrary small time.Comment: Replaced by a new version which contains the proof
Stochastic Properties of Static Friction
The onset of frictional motion is mediated by rupture-like slip fronts, which
nucleate locally and propagate eventually along the entire interface causing
global sliding. The static friction coefficient is a macroscopic measure of the
applied force at this particular instant when the frictional interface loses
stability. However, experimental studies are known to present important scatter
in the measurement of static friction; the origin of which remains unexplained.
Here, we study the nucleation of local slip at interfaces with slip-weakening
friction of random strength and analyze the resulting variability in the
measured global strength. Using numerical simulations that solve the
elastodynamic equations, we observe that multiple slip patches nucleate
simultaneously, many of which are stable and grow only slowly, but one reaches
a critical length and starts propagating dynamically. We show that a
theoretical criterion based on a static equilibrium solution predicts
quantitatively well the onset of frictional sliding. We develop a Monte-Carlo
model by adapting the theoretical criterion and pre-computing modal convolution
terms, which enables us to run efficiently a large number of samples and to
study variability in global strength distribution caused by the stochastic
properties of local frictional strength. The results demonstrate that an
increasing spatial correlation length on the interface, representing geometric
imperfections and roughness, causes lower global static friction. Conversely,
smaller correlation length increases the macroscopic strength while its
variability decreases. We further show that randomness in local friction
properties is insufficient for the existence of systematic precursory slip
events. Random or systematic non-uniformity in the driving force, such as
potential energy or stress drop, is required for arrested slip fronts. Our
model and observations..
Quantum Control Theory for State Transformations: Dark States and their Enlightenment
For many quantum information protocols such as state transfer, entanglement
transfer and entanglement generation, standard notions of controllability for
quantum systems are too strong. We introduce the weaker notion of accessible
pairs, and prove an upper bound on the achievable fidelity of a transformation
between a pair of states based on the symmetries of the system. A large class
of spin networks is presented for which this bound can be saturated. In this
context, we show how the inaccessible dark states for a given
excitation-preserving evolution can be calculated, and illustrate how some of
these can be accessed using extra catalytic excitations. This emphasises that
it is not sufficient for analyses of state transfer in spin networks to
restrict to the single excitation subspace. One class of symmetries in these
spin networks is exactly characterised in terms of the underlying graph
properties.Comment: 14 pages, 3 figures v3: rewritten for increased clarit
Thermodynamics of the 3-State Potts Spin Chain
We demonstrate the relation of the infrared anomaly of conformal field theory
with entropy considerations of finite temperature thermodynamics for the
3-state Potts chain. We compute the free energy and compute the low temperature
specific heat for both the ferromagnetic and anti-ferromagnetic spin chains,
and find the central charges for both.Comment: 18 pages, LaTex. Preprint # ITP-SB-92-60. References added and first
section expande
Parallelism for Quantum Computation with Qudits
Robust quantum computation with d-level quantum systems (qudits) poses two
requirements: fast, parallel quantum gates and high fidelity two-qudit gates.
We first describe how to implement parallel single qudit operations. It is by
now well known that any single-qudit unitary can be decomposed into a sequence
of Givens rotations on two-dimensional subspaces of the qudit state space.
Using a coupling graph to represent physically allowed couplings between pairs
of qudit states, we then show that the logical depth of the parallel gate
sequence is equal to the height of an associated tree. The implementation of a
given unitary can then optimize the tradeoff between gate time and resources
used. These ideas are illustrated for qudits encoded in the ground hyperfine
states of the atomic alkalies Rb and Cs. Second, we provide a
protocol for implementing parallelized non-local two-qudit gates using the
assistance of entangled qubit pairs. Because the entangled qubits can be
prepared non-deterministically, this offers the possibility of high fidelity
two-qudit gates.Comment: 9 pages, 3 figure
Como obter dados e gerar curvas de lactação de vacas de corte — modelo CLV Corte.
Existem poucos dados de produção de leite de vacas de corte na literatura, provavelmente, em função da dificuldade em se medir essa variável. O presente documento visa a incentivar a obtenção desse dado fundamental para entender a eficiência da fase de cria, segmento do ciclo completo em que há o maior dispêndio de energia na produção de carne. Para isso, na primeira parte, é descrita, em detalhes, uma metodologia para se obterem dados de produção de leite de vacas de corte com o uso de ordenhadeira mecânica. Informações sobre o número de pontos avaliados, uso de ocitocina, importância de dados de composição do leite e todos os aspectos relevantes para uma boa mensuração da produção de leite são abordados. Um modelo para a determinação das curvas de lactação e de seus parâmetros, programado em Excel e que é parte integrante deste documento (CLV Corte.xls), é descrito e informações para seu uso são fornecidas. O usuário deste documento, portanto, tem condições de fazer mensurações adequadas da produção de leite de vacas de corte e obter as estimativas de produção e da curva de lactação de forma automática, pelo modelo fornecido.bitstream/CNPGC-2010/13228/1/DOC176.pd
Degrees of controllability for quantum systems and applications to atomic systems
Precise definitions for different degrees of controllability for quantum
systems are given, and necessary and sufficient conditions are discussed. The
results are applied to determine the degree of controllability for various
atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
Asymmetric XXZ chain at the antiferromagnetic transition: Spectra and partition functions
The Bethe ansatz equation is solved to obtain analytically the leading
finite-size correction of the spectra of the asymmetric XXZ chain and the
accompanying isotropic 6-vertex model near the antiferromagnetic phase boundary
at zero vertical field. The energy gaps scale with size as and
its amplitudes are obtained in terms of level-dependent scaling functions.
Exactly on the phase boundary, the amplitudes are proportional to a sum of
square-root of integers and an anomaly term. By summing over all low-lying
levels, the partition functions are obtained explicitly. Similar analysis is
performed also at the phase boundary of zero horizontal field in which case the
energy gaps scale as . The partition functions for this case are found
to be that of a nonrelativistic free fermion system. From symmetry of the
lattice model under rotation, several identities between the partition
functions are found. The scaling at zero vertical field is
interpreted as a feature arising from viewing the Pokrovsky-Talapov transition
with the space and time coordinates interchanged.Comment: Minor corrections only. 18 pages in RevTex, 2 PS figure
- …
