1,694 research outputs found

    Emission factors for open and domestic biomass burning for use in atmospheric models

    Get PDF
    Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially true for non-methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New EF should improve regional to global BB emissions estimates and therefore, the input for atmospheric models. In this work we present an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing. All EFs are converted to one standard form (g compound emitted per kg dry biomass burned) using the carbon mass balance method and they are categorized into 14 fuel or vegetation types. Biomass burning terminology is defined to promote consistency. We compile a large number of measurements of biomass consumption per unit area for important fire types and summarize several recent estimates of global biomass consumption by the major types of biomass burning. Post emission processes are discussed to provide a context for the emission factor concept within overall atmospheric chemistry and also highlight the potential for rapid changes relative to the scale of some models or remote sensing products. Recent work shows that individual biomass fires emit significantly more gas-phase NMOC than previously thought and that including additional NMOC can improve photochemical model performance. A detailed global estimate suggests that BB emits at least 400 Tg yr^(−1) of gas-phase NMOC, which is almost 3 times larger than most previous estimates. Selected recent results (e.g. measurements of HONO and the BB tracers HCN and CH_3CN) are highlighted and key areas requiring future research are briefly discussed

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Direct Observation of Site-specific Valence Electronic Structure at Interface: SiO2/Si Interface

    Full text link
    Atom specific valence electronic structures at interface are elucidated successfully using soft x-ray absorption and emission spectroscopy. In order to demonstrate the versatility of this method, we investigated SiO2/Si interface as a prototype and directly observed valence electronic states projected at the particular atoms of the SiO2/Si interface; local electronic structure strongly depends on the chemical states of each atom. In addition we compared the experimental results with first-principle calculations, which quantitatively revealed the interfacial properties in atomic-scale.Comment: 4 pages, 3 figure

    Evolution of trace gases and particles emitted by a chaparral fire in California

    Get PDF
    Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO_2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO_2; CO; NO_x; NH_3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O_3 to excess CO in the plume (ΔO_3/ΔCO) increased from −5.13 (±1.13) × 10^(−3) to 10.2 (±2.16) × 10^(−2) in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C_2H_4 we infer an in-plume average OH concentration of 5.27 (±0.97) × 10^6 molec cm^(−3), consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH_3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NO_x was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first ~4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO_2) increased by a factor of 2.50 ± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO_2 decreased sharply for the first hour and then increased slowly with a net decrease of ~20% over 4 h. The fraction of thickly coated rBC particles increased up to ~85% over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations

    Band structures of periodic carbon nanotube junctions and their symmetries analyzed by the effective mass approximation

    Full text link
    The band structures of the periodic nanotube junctions are investigated by the effective mass theory and the tight binding model. The periodic junctions are constructed by introducing pairs of a pentagonal defect and a heptagonal defect periodically in the carbon nanotube. We treat the periodic junctions whose unit cell is composed by two kinds of metallic nanotubes with almost same radii, the ratio of which is between 0.7 and 1 . The discussed energy region is near the undoped Fermi level where the channel number is kept to two, so there are two bands. The energy bands are expressed with closed analytical forms by the effective mass theory with some assumptions, and they coincide well with the numerical results by the tight binding model. Differences between the two methods are also discussed. Origin of correspondence between the band structures and the phason pattern discussed in Phys. Rev. B {\bf 53}, 2114, is clarified. The width of the gap and the band are in inverse proportion to the length of the unit cell, which is the sum of the lengths measured along the tube axis in each tube part and along 'radial' direction in the junction part. The degeneracy and repulsion between the two bands are determined only from symmetries.Comment: RevTeX, gif fil

    Energy efficiency parametric design tool in the framework of holistic ship design optimization

    Get PDF
    Recent International Maritime Organization (IMO) decisions with respect to measures to reduce the emissions from maritime greenhouse gases (GHGs) suggest that the collaboration of all major stakeholders of shipbuilding and ship operations is required to address this complex techno-economical and highly political problem efficiently. This calls eventually for the development of proper design, operational knowledge, and assessment tools for the energy-efficient design and operation of ships, as suggested by the Second IMO GHG Study (2009). This type of coordination of the efforts of many maritime stakeholders, with often conflicting professional interests but ultimately commonly aiming at optimal ship design and operation solutions, has been addressed within a methodology developed in the EU-funded Logistics-Based (LOGBASED) Design Project (2004–2007). Based on the knowledge base developed within this project, a new parametric design software tool (PDT) has been developed by the National Technical University of Athens, Ship Design Laboratory (NTUA-SDL), for implementing an energy efficiency design and management procedure. The PDT is an integral part of an earlier developed holistic ship design optimization approach by NTUA-SDL that addresses the multi-objective ship design optimization problem. It provides Pareto-optimum solutions and a complete mapping of the design space in a comprehensive way for the final assessment and decision by all the involved stakeholders. The application of the tool to the design of a large oil tanker and alternatively to container ships is elaborated in the presented paper

    Analysis of quantum conductance of carbon nanotube junctions by the effective mass approximation

    Full text link
    The electron transport through the nanotube junctions which connect the different metallic nanotubes by a pair of a pentagonal defect and a heptagonal defect is investigated by Landauer's formula and the effective mass approximation. From our previous calculations based on the tight binding model, it has been known that the conductance is determined almost only by two parameters,i.e., the energy in the unit of the onset energy of more than two channels and the ratio of the radii of the two nanotubes. The conductance is calculated again by the effective mass theory in this paper and a simple analytical form of the conductance is obtained considering a special boundary conditions of the envelop wavefunctions. The two scaling parameters appear naturally in this treatment. The results by this formula coincide fairly well with those of the tight binding model. The physical origin of the scaling law is clarified by this approach.Comment: RevTe

    Boreal forest fire emissions in fresh Canadian smoke plumes: C_1-C_(10) volatile organic compounds (VOCs), CO_2, CO, NO_2, NO, HCN and CH_3CN

    Get PDF
    Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas chromatography. Together with simultaneous measurements of CO_2, CO, CH_4, CH_2O, NO_2, NO, HCN and CH_3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH_2O) were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO_2, CO and CH_4, the largest emission factors (EFs) for individual species were formaldehyde (2.1 ± 0.2 g kg^(−1)), followed by methanol, NO_2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH_3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr^(−1) in the form of NMVOCs, with approximately 41% of the carbon released as C_1-C_2 NMVOCs and 21% as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA) formation. The fire-averaged EF of dichloromethane or CH_2Cl_2, (6.9 ± 8.6) × 10^(−4)gkg^(−1), was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl_3) or methyl chloroform (CH_3CCl_3) from boreal forest fires. The speciated hydrocarbon measurements presented here show the importance of carbon released by short-chain NMVOCs, the strong contribution of pinene emissions from boreal forest fires, and the wide range of compound classes in the most abundantly emitted NMVOCs, all of which can be used to improve biomass burning inventories in local/global models and reduce uncertainties in model estimates of trace gas emissions and their impact on the atmosphere

    Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system

    Get PDF
    We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. Emission factors were measured with a fixed open-path Fourier transform infrared (OP-FTIR) system that was deployed on the fire control lines. We compare these emission factors to those measured with a roving, point sampling, land-based FTIR and an airborne FTIR deployed on the same fires. We also compare to emission factors measured by a similar OP-FTIR system deployed on savanna fires in Africa. The data suggest that the method used to sample smoke can strongly influence the relative abundance of the emissions that are observed. The majority of fire emissions were lofted in the convection column and were sampled by the airborne FTIR. The roving, ground-based, point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The OP-FTIR provided a ~ 30 m path-integrated sample of emissions transported to the fixed path via complex ground-level circulation. The OP-FTIR typically probed two distinct combustion regimes, "flaming-like" (immediately after adjacent ignition and before the adjacent plume achieved significant vertical development) and "smoldering-like." These two regimes are denoted "early" and "late", respectively. The path-integrated sample of the ground-level smoke layer adjacent to the fire from the OP-FTIR provided our best estimate of fire-line exposure to smoke for wildland fire personnel. We provide a table of estimated fire-line exposures for numerous known air toxics based on synthesizing results from several studies. Our data suggest that peak exposures are more likely to challenge permissible exposure limits for wildland fire personnel than shift-average (8 h) exposures
    corecore