27,817 research outputs found
PRISM: a tool for automatic verification of probabilistic systems
Probabilistic model checking is an automatic formal verification technique for analysing quantitative properties of systems which exhibit stochastic behaviour. PRISM is a probabilistic model checking tool which has already been successfully deployed in a wide range of application domains, from real-time communication protocols to biological signalling pathways. The tool has recently undergone a significant amount of development. Major additions include facilities to manually explore models, Monte-Carlo discrete-event simulation techniques for approximate model analysis (including support for distributed simulation) and the ability to compute cost- and reward-based measures, e.g. "the expected energy consumption of the system before the first failure occurs". This paper presents an overview of all the main features of PRISM. More information can be found on the website: www.cs.bham.ac.uk/~dxp/prism
Female impersonation as an alternative reproductive strategy in giant cuttlefish
Out of all the animals, cephalopods possess an unrivalled ability to change their shape and body patterns. Our observations of giant cuttlefish (Sepia apama) suggest this ability has allowed them to evolve alternative mating strategies in which males can switch between the appearance of a female and that of a male in order to foil the guarding attempts of larger males. At a mass breeding aggregation in South Australia, we repeatedly observed single small males accompanying mating pairs. While doing so, the small male assumed the body shape and patterns of a female. Such males were never attacked by the larger mate-guarding male. On more than 20 occasions, when the larger male was distracted by another male intruder, these small males, previously indistinguishable from a female, were observed to change body pattern and behaviour to that of a male in mating display. These small males then attempted to mate with the female, often with success. This potential for dynamic sexual mimicry may have played a part in driving the evolution of the remarkable powers of colour and shape transformation which characterize the cephalopods
Quasiparticle mirages in the tunneling spectra of d-wave superconductors
We illustrate the importance of many-body effects in the Fourier transformed
local density of states (FT-LDOS) of d-wave superconductors from a model of
electrons coupled to an Einstein mode with energy Omega_0. For bias energies
significantly larger than Omega_0 the quasiparticles have short lifetimes due
to this coupling, and the FT-LDOS is featureless if the electron-impurity
scattering is treated within the Born approximation. In this regime it is
important to include boson exchange for the electron-impurity scattering which
provides a `step down' in energy for the electrons and allows for long
lifetimes. This many-body effect produces qualitatively different results,
namely the presence of peaks in the FT-LDOS which are mirrors of the
quasiparticle interference peaks which occur at bias energies smaller than ~
Omega_0. The experimental observation of these quasiparticle mirages would be
an important step forward in elucidating the role of many-body effects in
FT-LDOS measurements.Comment: revised text with new figures, to be published, Phys Rev
Evaluation of the utility of sediment data in NASQAN (National Stream Quality Accounting Network)
Monthly suspended sediment discharge measurements, made by the USGS as part of the National Stream Quality Accounting Network (NASQAN), are analysed to assess the adequacy in terms of spatial coverage, temporal sampling frequency, accuracy of measurements, as well as in determining the sediment yield in the nation's rivers.
It is concluded that the spatial distribution of NASQAN stations is reasonable but necessarily judgemental. The temporal variations of sediment data contain much higher frequencies than monthly. Sampling error is found to be minor when compared with other causes of data scatter which can be substantial. The usefulness of the monthly measurements of sediment transport is enhanced when combined with the daily measurements of water discharge. Increasing the sampling frequency moderately would not materially improve the accuracy of sediment yield determinations
The Temperature Evolution of the Spectral Peak in High Temperature Superconductors
Recent photoemission data in the high temperature cuprate superconductor
Bi2212 have been interpreted in terms of a sharp spectral peak with a
temperature independent lifetime, whose weight strongly decreases upon heating.
By a detailed analysis of the data, we are able to extract the temperature
dependence of the electron self-energy, and demonstrate that this intepretation
is misleading. Rather, the spectral peak loses its integrity above Tc due to a
large reduction in the electron lifetime.Comment: 5 pages, revtex, 4 encapsulated postscript figure
Extraction of the Electron Self-Energy from Angle Resolved Photoemission Data: Application to Bi2212
The self-energy , the fundamental function which
describes the effects of many-body interactions on an electron in a solid, is
usually difficult to obtain directly from experimental data. In this paper, we
show that by making certain reasonable assumptions, the self-energy can be
directly determined from angle resolved photoemission data. We demonstrate this
method on data for the high temperature superconductor
(Bi2212) in the normal, superconducting, and pseudogap phases.Comment: expanded version (6 pages), to be published, Phys Rev B (1 Sept 99
Magnetoelliptic Instabilities
We consider the stability of a configuration consisting of a vertical
magnetic field in a planar flow on elliptical streamlines in ideal
hydromagnetics. In the absence of a magnetic field the elliptical flow is
universally unstable (the ``elliptical instability''). We find this universal
instability persists in the presence of magnetic fields of arbitrary strength,
although the growthrate decreases somewhat. We also find further instabilities
due to the presence of the magnetic field. One of these, a destabilization of
Alfven waves, requires the magnetic parameter to exceed a certain critical
value. A second, involving a mixing of hydrodynamic and magnetic modes, occurs
for all magnetic-field strengths. These instabilities may be important in
tidally distorted or otherwise elliptical disks. A disk of finite thickness is
stable if the magnetic fieldstrength exceeds a critical value, similar to the
fieldstrength which suppresses the magnetorotational instability.Comment: Accepted for publication in Astrophysical Journa
Magnetic resonance at 41 meV and charge dynamics in YBa_2Cu_3O_6.95
We report an Eliashberg analysis of the electron dynamics in YBa_2Cu_3O_6.95.
The magnetic resonance at 41 meV couples to charge carriers and defines the
characteristic shape in energy of the scattering rate \tau^{-1}(T,\omega) which
allows us to construct the charge-spin spectral density I^2\chi(\omega,T) at
temperature T. The T dependence of the weight under the resonance peak in
I^2\chi(\omega,T) agrees with experiment as does that of the London penetration
depth and of the microwave conductivity. Als, at T=0 condensation energy, the
fractional oscillator strength in the condensate, and the ratio of gap to
critical temperature agree well with the data.Comment: 7 Pages, 3 Figures, accepted for publication in Europhysics Letter
- …
