19,692 research outputs found

    Patterns on a Roll: A Method for Continuous Feed Nanoprinting

    Full text link
    Exploiting elastic instability in thin films has proven a robust method for creating complex patterns and structures across a wide range of lengthscales. Even the simplest of systems, an elastic membrane with a lattice of pores, under mechanical strain, generates complex patterns featuring long-range orientational order. When we promote this system to a curved surface, in particular, a cylindrical membrane, a novel set of features, patterns and broken symmetries appears. The newfound periodicity of the cylinder allows for a novel continuous method for nanoprinting.Comment: 4 pages, 4 figure

    N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature

    Full text link
    We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on R \times S^3 from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature limit where the planar contributions dominate. We conclude that the plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \times S^3.Comment: 31pages: added comments and reference

    Ac Susceptibility and Static Magnetization Measurements of CeRu2_2Si2_2 at Small Magnetic Fields and Ultra Low Temperatures

    Get PDF
    The magnetic properties of CeRu2_2Si2_2 at microkelvin temperatures (down to 170 μ\muK) and ultra small magnetic fields (0.026.210.02\sim6.21 mT) are investigated experimentally for the first time. The simultaneously measured ac susceptibility and static magnetization show neither evidence of the magnetic ordering, superconductivity down to the lowest temperatures nor conventional Landau Fermi-Liquid behavior. The results imply the magnetic transition temperature in undoped CeRu2_2Si2_2 is very close to absolute 0 K. The possibility for proximity of CeRu2_2Si2_2 to the quantum critical point without any doping is discussed.Comment: 4 pages, 3 figures; accepted for publication in Phys. Rev. B (Rapid Communication) and scheduled issue on 1st of May 200

    Straight Round the Twist: Frustration and Chirality in Smectics-A

    Full text link
    Frustration is a powerful mechanism in condensed matter systems, driving both order and co plexity. In smectics, the frustration between macroscopic chirality and equally spaced layers generates textures characterised by a proliferation of defects. In this article, we study several different ground states of the chiral Landau-de Gennes free energy for a smectic liquid crystal. The standard theory finds the twist grain boundary (TGB) phase to be the ground state for chiral type II smectics. However, for very highly chiral systems, the hierarchical helical nanofilament (HN) phase can form and is stable over the TGB.Comment: 9 pages, 3 figures, submitted to J. Interface Focu

    Elastic Instability Triggered Pattern Formation

    Get PDF
    Recent experiments have exploited elastic instabilities in membranes to create complex patterns. However, the rational design of such structures poses many challenges, as they are products of nonlinear elastic behavior. We pose a simple model for determining the orientational order of such patterns using only linear elasticity theory which correctly predicts the outcomes of several experiments. Each element of the pattern is modeled by a "dislocation dipole" located at a point on a lattice, which then interacts elastically with all other dipoles in the system. We explicitly consider a membrane with a square lattice of circular holes under uniform compression and examine the changes in morphology as it is allowed to relax in a specified direction.Comment: 15 pages, 7 figures, the full catastroph

    Time evolution in linear response: Boltzmann equations and beyond

    Get PDF
    In this work a perturbative linear response analysis is performed for the time evolution of the quasi-conserved charge of a scalar field. One can find two regimes, one follows exponential damping, where the damping rate is shown to come from quantum Boltzmann equations. The other regime (coming from multiparticle cuts and products of them) decays as power law. The most important, non-oscillating contribution in our model comes from a 4-particle intermediate state and decays as 1/t^3. These results may have relevance for instance in the context of lepton number violation in the Early Universe.Comment: 19 page
    corecore