1,030 research outputs found

    Investigating the effect of a stress-based uniaxial anisotropy on the magnetic behaviour of La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> elements

    Get PDF
    We investigate the interplay between shape anisotropy and a stress-based uniaxial anisotropy on the magnetic domain structure of La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; nanoelements as a function of aspect ratio, using micromagnetic simulations. We show that a direct competition between the anisotropies gives rise to high energy multi-domain flux closure configurations, whilst an alignment of the anisotropies can modify the effective element dimensions and act to stabilise a single domain configuration. Our results demonstrate the ability to control the spin state of La&lt;sub&gt;0.7&lt;/sub&gt;Sr&lt;sub&gt;0.3&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; elements in addition to tailoring the domain wall width by controlling the anisotropy of the material, which is key for spintronic applications that require a high spin-polarization and stable magnetic configurations

    Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys

    Get PDF
    Quantitative X-ray powder diffraction analysis demonstrates that mixing Ti, Zr and Hf on the ionic site in the half-Heusler structure, which is a common strategy to lower the lattice thermal conductivity in this important class of thermoelectric materials, leads to multiphase behaviour. For example, nominal Ti0.5Zr0.5NiSn has a distribution of Ti1−xZrxNiSn compositions between 0.24 &#8804; x &#8804; 0.70. Similar variations are observed for Zr0.50Hf0.5NiSn and Ti0.5Hf0.5NiSn. Electron microscopy and elemental mapping demonstrate that the main compositional variations occur over micrometre length scales. The thermoelectric power factors of the mixed phase samples are improved compared to the single phase end-members (e.g. S2/ρ = 1.8 mW m−1 K−2 for Ti0.5Zr0.5NiSn, compared to S2/ρ = 1.5 mW m−1 K−2 for TiNiSn), demonstrating that the multiphase behaviour is not detrimental to electronic transport. Thermal conductivity measurements for Ti0.5Zr0.5NiSn0.95 suggest that the dominant reduction comes from Ti/Zr mass and size difference phonon scattering with the multiphase behaviour a secondary effect

    Simulation and analysis of solenoidal ion sources

    Get PDF
    We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source

    Nanocharacterisation of precipitates in austenite high manganese steels with advanced techniques: HRSTEM and DualEELS mapping

    Get PDF
    To achieve optimal mechanical properties in high manganese steels, the precipitation of nanoprecipitates of vanadium and niobium carbides is under investigation. It is shown that under controlled heat treatments between 850°C and 950°C following hot deformation, few-nanometre precipitates of either carbide can be produced in test steels with suitable contents of vanadium or niobium. The structure and chemistry of these precipitates are examined in detail with a spatial resolution down to better than 1 nm using a newly commissioned scanning transmission electron microscope. In particular, it is shown that the nucleation of vanadium carbide precipitates often occurs at pre-existing titanium carbide precipitates which formed from titanium impurities in the bulk steel. This work will also highlight the links between the nanocharacterisation and changes in the bulk properties on annealing

    Engineering magnetic domain-wall structure in permalloy nanowires

    Get PDF
    Using Lorentz transmission electron microscopy we investigate the behavior of domain walls pinned at non-topographic defects in Cr(3 nm)/Permalloy(10 nm)/Cr(5 nm) nanowires of width 500 nm. The pinning sites consist of linear defects where magnetic properties are modified by a Ga ion probe with diameter ~ 10 nm using a focused ion beam microscope. We study the detailed change of the modified region (which is on the scale of the focused ion spot) using electron energy loss spectroscopy and differential phase contrast imaging on an aberration (Cs) corrected scanning transmission electron microscope. The signal variation observed indicates that the region modified by the irradiation corresponds to ~ 40-50 nm despite the ion probe size of only 10 nm. Employing the Fresnel mode of Lorentz transmission electron microscopy, we show that it is possible to control the domain wall structure and its depinning strength not only via the irradiation dose but also the line orientation.Comment: Accepted for publication in Physical Review Applie

    Texture, twinning and metastable "tetragonal" phase in ultrathin films of HfO<sub>2</sub> on a Si substrate

    Get PDF
    Thin HfO&lt;sub&gt;2&lt;/sub&gt; films grown on the lightly oxidised surface of (100) Si wafers have been examined using dark-field transmission electron microscopy and selected area electron diffraction in plan view. The polycrystalline film has a grain size of the order of 100 nm and many of the grains show evidence of twinning on (110) and (001) planes. Diffraction studies showed that the film had a strong [110] out-of-plane texture, and that a tiny volume fraction of a metastable (possibly tetragonal) phase was retained. The reasons for the texture, twinning and the retention of the metastable phase are discussed

    Charge redistribution in the formation of one-dimensional lithium wires on Cu(001)

    Get PDF
    We describe the formation of one-dimensional lithium wires on a Cu(001) substrate, providing an atomic-scale description of the onset of metallization in this prototypical adsorption system. A combination of helium atom scattering and density-functional theory reveals pronounced changes in the electronic charge distribution on the formation of the c(5√2×√2)R45° Li/Cu(001) structure, as in-plane bonds are created. Charge donation from Li-substrate bonds is found to facilitate the formation of stable, bonded, and depolarized chains of Li adatoms that coexist with an interleaved phase of independent adatoms. The resultant overlayer has a commensurate charge distribution and lattice modulations but differs fundamentally from structurally similar charge-density wave systems

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) ÎŒm×(31.4±0.8) ÎŒm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    High resolution structural characterisation of laser-induced defect clusters inside diamond

    Get PDF
    Laser writing with ultrashort pulses provides a potential route for the manufacture of three-dimensional wires, waveguides and defects within diamond. We present a transmission electron microscopy (TEM) study of the intrinsic structure of the laser modifications and reveal a complex distribution of defects. Electron energy loss spectroscopy (EELS) indicates that the majority of the irradiated region remains as sp3sp^3 bonded diamond. Electrically-conductive paths are attributed to the formation of multiple nano-scale, sp2sp^2-bonded graphitic wires and a network of strain-relieving micro-cracks
    • 

    corecore