122 research outputs found

    X-Ray Spectral Diagnostics Of Neon Photoionization Experiments On The Z-Machine

    Get PDF
    We report on an initial spectroscopic study of low-density, x-ray photoionized neon with x-ray spectroscopy. These experiments, carried out on the Z-machine at Sandia, are optimized to produce a gradient-free, collisionless plasma, and to explore issues related to the rapid x-ray photoionization of relatively cold, low-density plasmas. The initial experiments used time-integrated absorption spectroscopy, backlit by the pinch radiation, to determine the ionization balance in the gas cell. Future experiments will use time-resolved spectroscopy in both absorption and emission. The emission spectra are expected to be similar to those seen from photoionized astrophysical sources, such as x-ray binaries. Indeed, in addition to addressing basic plasma and atomic physics issues, these experiments are designed to help the astrophysical community better understand the new, high-resolution spectra being produced by the Chandra and XMM-Newton telescopes, and to benchmark spectral synthesis codes

    Reprocessing of Soft X-ray Emission Lines in Black Hole Accretion Disks

    Full text link
    By means of a Monte Carlo code that accounts for Compton scattering and photoabsorption followed by recombination, we have investigated the radiation transfer of Ly alpha, He alpha, and recombination continua photons of H- and He-like C, N, O, and Ne produced in the photoionized atmosphere of a relativistic black hole accretion disk. We find that photoelectric opacity causes significant attenuation of photons with energies above the O VIII K-edge; that the conversion efficiencies of these photons into lower-energy lines and recombination continua are high; and that accounting for this reprocessing significantly (by factors of 21% to 105%) increases the flux of the Ly alpha and He alpha emission lines of H- and He-like C and O escaping the disk atmosphere.Comment: 4 pages including 4 encapsulated postscript figures; LaTeX format, uses aastex.cls and emulateapj5.sty; accepted on 2004 January 13 for publication in The Astrophysical Journa

    High-Resolution Chandra Spectroscopy Of Tau Scorpii: A Narrow-Line X-Ray Spectrum From A Hot Star

    Get PDF
    Long known to be an unusual early-type star by virtue of its hard and strong X-ray emission, tau Scorpii poses a severe challenge to the standard picture of O-star wind-shock X-ray emission. The Chandra HETGS spectrum now provides significant direct evidence that this B0.2 star does not fit this standard wind-shock framework. The many emission lines detected with the Chandra gratings are significantly narrower than what would be expected from a star with the known wind properties of tau Sco, although they are broader than the corresponding lines seen in late-type coronal sources. While line ratios are consistent with the hot plasma on this star being within a few stellar radii of the photosphere, from at least one He-like complex there is evidence that the X-ray emitting plasma is located more than a stellar radius above the photosphere. The Chandra spectrum of Sco is harder and more variable than those of other hot stars, with the exception of the young magnetized O star theta(1) Ori C. We discuss these new results in the context of wind, coronal, and hybrid wind-magnetic models of hot-star X-ray emission

    Collisional Plasma Models with APEC/APED: Emission Line Diagnostics of Hydrogen-like and Helium-like Ions

    Full text link
    New X-ray observatories (Chandra and XMM-Newton) are providing a wealth of high-resolution X-ray spectra in which hydrogen- and helium-like ions are usually strong features. We present results from a new collisional-radiative plasma code, the Astrophysical Plasma Emission Code (APEC), which uses atomic data in the companion Astrophysical Plasma Emission Database (APED) to calculate spectral models for hot plasmas. APED contains the requisite atomic data such as collisional and radiative rates, recombination cross sections, dielectronic recombination rates, and satellite line wavelengths. We compare the APEC results to other plasma codes for hydrogen- and helium-like diagnostics, and test the sensitivity of our results to the number of levels included in the models. We find that dielectronic recombination with hydrogen-like ions into high (n=6-10) principal quantum numbers affects some helium-like line ratios from low-lying (n=2) transitions.Comment: 5 pages, 6 figures, accepted by ApJ Letter
    corecore