18,811 research outputs found

    Airborne Fraunhofer Line Discriminator

    Get PDF
    Airborne Fraunhofer Line Discriminator enables prospecting for fluorescent materials, hydrography with fluorescent dyes, and plant studies based on fluorescence of chlorophyll. Optical unit design is the coincidence of Fraunhofer lines in the solar spectrum occurring at the characteristic wavelengths of some fluorescent materials

    Fermi arcs and the hidden zeros of the Green's function in the pseudogap state

    Full text link
    We investigate the low energy properties of a correlated metal in the proximity of a Mott insulator within the Hubbard model in two dimensions. We introduce a new version of the Cellular Dynamical Mean Field Theory using cumulants as the basic irreducible objects. These are used for re-constructing the lattice quantities from their cluster counterparts. The zero temperature one particle Green's function is characterized by the appearance of lines of zeros, in addition to a Fermi surface which changes topology as a function of doping. We show that these features are intimately connected to the opening of a pseudogap in the one particle spectrum and provide a simple picture for the appearance of Fermi arcs.Comment: revised version; 5 pages, 3 figure

    Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities

    Full text link
    In this paper we establish an equivalence between the category of graded D-branes of type B in Landau-Ginzburg models with homogeneous superpotential W and the triangulated category of singularities of the fiber of W over zero. The main result is a theorem that shows that the graded triangulated category of singularities of the cone over a projective variety is connected via a fully faithful functor to the bounded derived category of coherent sheaves on the base of the cone. This implies that the category of graded D-branes of type B in Landau-Ginzburg models with homogeneous superpotential W is connected via a fully faithful functor to the derived category of coherent sheaves on the projective variety defined by the equation W=0.Comment: 26 pp., LaTe

    Micromagnetic Simulations of Ferromagnetic Rings

    Full text link
    Thin nanomagnetic rings have generated interest for fundamental studies of magnetization reversal and also for their potential in various applications, particularly as magnetic memories. They are a rare example of a geometry in which an analytical solution for the rate of thermally induced magnetic reversal has been determined, in an approximation whose errors can be estimated and bounded. In this work, numerical simulations of soft ferromagnetic rings are used to explore aspects of the analytical solution. The evolution of the energy near the transition states confirms that, consistent with analytical predictions, thermally induced magnetization reversal can have one of two intermediate states: either constant or soliton-like saddle configurations, depending on ring size and externally applied magnetic field. The results confirm analytical predictions of a transition in thermally activated reversal behavior as magnetic field is varied at constant ring size. Simulations also show that the analytic one dimensional model continues to hold even for wide rings

    Thermal Stability of the Magnetization in Perpendicularly Magnetized Thin Film Nanomagnets

    Full text link
    Understanding the stability of thin film nanomagnets with perpendicular magnetic anisotropy (PMA) against thermally induced magnetization reversal is important when designing perpendicularly magnetized patterned media and magnetic random access memories. The leading-order dependence of magnetization reversal rates are governed by the energy barrier the system needs to surmount in order for reversal to proceed. In this paper we study the reversal dynamics of these systems and compute the relevant barriers using the string method of E, Vanden-Eijnden, and Ren. We find the reversal to be often spatially incoherent; that is, rather than the magnetization flipping as a rigid unit, reversal proceeds instead through a soliton-like domain wall sweeping through the system. We show that for square nanomagnetic elements the energy barrier increases with element size up to a critical length scale, beyond which the energy barrier is constant. For circular elements the energy barrier continues to increase indefinitely, albeit more slowly beyond a critical size. In both cases the energy barriers are smaller than those expected for coherent magnetization reversal.Comment: 5 pages, 4 Figure

    Strong Coupling Theory for Interacting Lattice Models

    Full text link
    We develop a strong coupling approach for a general lattice problem. We argue that this strong coupling perspective represents the natural framework for a generalization of the dynamical mean field theory (DMFT). The main result of this analysis is twofold: 1) It provides the tools for a unified treatment of any non-local contribution to the Hamiltonian. Within our scheme, non-local terms such as hopping terms, spin-spin interactions, or non-local Coulomb interactions are treated on equal footing. 2) By performing a detailed strong-coupling analysis of a generalized lattice problem, we establish the basis for possible clean and systematic extensions beyond DMFT. To this end, we study the problem using three different perspectives. First, we develop a generalized expansion around the atomic limit in terms of the coupling constants for the non-local contributions to the Hamiltonian. By analyzing the diagrammatics associated with this expansion, we establish the equations for a generalized dynamical mean-field theory (G-DMFT). Second, we formulate the theory in terms of a generalized strong coupling version of the Baym-Kadanoff functional. Third, following Pairault, Senechal, and Tremblay, we present our scheme in the language of a perturbation theory for canonical fermionic and bosonic fields and we establish the interpretation of various strong coupling quantities within a standard perturbative picture.Comment: Revised Version, 17 pages, 5 figure

    Experimental study of acoustic displays of flight parameters in a simulated aerospace vehicle

    Get PDF
    Evaluating acoustic displays of target location in target detection and of flight parameters in simulated aerospace vehicle

    Validating Predictions of Unobserved Quantities

    Full text link
    The ultimate purpose of most computational models is to make predictions, commonly in support of some decision-making process (e.g., for design or operation of some system). The quantities that need to be predicted (the quantities of interest or QoIs) are generally not experimentally observable before the prediction, since otherwise no prediction would be needed. Assessing the validity of such extrapolative predictions, which is critical to informed decision-making, is challenging. In classical approaches to validation, model outputs for observed quantities are compared to observations to determine if they are consistent. By itself, this consistency only ensures that the model can predict the observed quantities under the conditions of the observations. This limitation dramatically reduces the utility of the validation effort for decision making because it implies nothing about predictions of unobserved QoIs or for scenarios outside of the range of observations. However, there is no agreement in the scientific community today regarding best practices for validation of extrapolative predictions made using computational models. The purpose of this paper is to propose and explore a validation and predictive assessment process that supports extrapolative predictions for models with known sources of error. The process includes stochastic modeling, calibration, validation, and predictive assessment phases where representations of known sources of uncertainty and error are built, informed, and tested. The proposed methodology is applied to an illustrative extrapolation problem involving a misspecified nonlinear oscillator
    • …
    corecore