18,422 research outputs found

    The shape and mechanics of curved fold origami structures

    Full text link
    We develop recursion equations to describe the three-dimensional shape of a sheet upon which a series of concentric curved folds have been inscribed. In the case of no stretching outside the fold, the three-dimensional shape of a single fold prescribes the shape of the entire origami structure. To better explore these structures, we derive continuum equations, valid in the limit of vanishing spacing between folds, to describe the smooth surface intersecting all the mountain folds. We find that this surface has negative Gaussian curvature with magnitude equal to the square of the fold's torsion. A series of open folds with constant fold angle generate a helicoid

    Models for the 3-D axisymmetric gravitational potential of the Milky Way Galaxy - A detailed modelling of the Galactic disk

    Full text link
    Aims. Galaxy mass models based on simple and analytical functions for the density and potential pairs have been widely proposed in the literature. Disk models constrained by kinematic data alone give information on the global disk structure only very near the Galactic plane. We attempt to circumvent this issue by constructing disk mass models whose three-dimensional structures are constrained by a recent Galactic star counts model in the near-infrared and also by observations of the hydrogen distribution in the disk. Our main aim is to provide models for the gravitational potential of the Galaxy that are fully analytical but also with a more realistic description of the density distribution in the disk component. Methods. From the disk model directly based on the observations (here divided into the thin and thick stellar disks and the HI and H2_2 disks subcomponents), we produce fitted mass models by combining three Miyamoto-Nagai disk profiles of any "model order" (1, 2, or 3) for each disk subcomponent. The Miyamoto-Nagai disks are combined with models for the bulge and "dark halo" components and the total set of parameters is adjusted by observational kinematic constraints. A model which includes a ring density structure in the disk, beyond the solar Galactic radius, is also investigated. Results. The Galactic mass models return very good matches to the imposed observational constraints. In particular, the model with the ring density structure provides a greater contribution of the disk to the rotational support inside the solar circle. The gravitational potential models and their associated force-fields are described in analytically closed forms, and in addition, they are also compatible with our best knowledge of the stellar and gas distributions in the disk component. The gravitational potential models are suited for investigations of orbits in the Galactic disk.Comment: 22 pages, 13 figures, 11 tables, accepted for publication in A&

    Enhancement of the Benjamin-Feir instability with dissipation

    Get PDF
    It is shown that there is an overlooked mechanism whereby some kinds of dissipation can enhance the Benjamin-Feir instability of water waves. This observation is new, and although it is counterintuitive, it is due to the fact that the Benjamin-Feir instability involves the collision of modes with opposite energy sign (relative to the carrier wave), and it is the negative energy perturbations which are enhanced.Comment: 15 pages, 2 figures To download more papers, go to http://www.cmla.ens-cachan.fr/~dias. Physics of Fluids (2007) to appea

    Non-perturbative fixed points and renormalization group improved effective potential

    Get PDF
    The stability conditions of a renormalization group improved effective potential have been discussed in the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models assuming the existence of non-perturbative fixed points associated to a conformal phase. In the case of scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of the potential is also changed.Comment: 6 pages, 8 figures, References added. Matching the journal versio

    Monte Carlo Simulations of Ultrathin Magnetic Dots

    Full text link
    In this work we study the thermodynamic properties of ultrathin ferromagnetic dots using Monte Carlo simulations. We investigate the vortex density as a function of the temperature and the vortex structure in monolayer dots with perpendicular anisotropy and long-range dipole interaction. The interplay between these two terms in the hamiltonian leads to an interesting behavior of the thermodynamic quantities as well as the vortex density.Comment: 10 figure
    corecore