19,529 research outputs found

    An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow

    Get PDF
    In this paper we consider the Hamiltonian formulation of the equations of incompressible ideal fluid flow from the point of view of optimal control theory. The equations are compared to the finite symmetric rigid body equations analyzed earlier by the authors. We discuss various aspects of the Hamiltonian structure of the Euler equations and show in particular that the optimal control approach leads to a standard formulation of the Euler equations -- the so-called impulse equations in their Lagrangian form. We discuss various other aspects of the Euler equations from a pedagogical point of view. We show that the Hamiltonian in the maximum principle is given by the pairing of the Eulerian impulse density with the velocity. We provide a comparative discussion of the flow equations in their Eulerian and Lagrangian form and describe how these forms occur naturally in the context of optimal control. We demonstrate that the extremal equations corresponding to the optimal control problem for the flow have a natural canonical symplectic structure.Comment: 6 pages, no figures. To appear in Proceedings of the 39th IEEEE Conference on Decision and Contro

    Ordered and disordered dynamics in monolayers of rolling particles

    Full text link
    We consider the ordered and disordered dynamics for monolayers of rolling self-interacting particles with an offset center of mass and a non-isotropic inertia tensor. The rolling constraint is considered as a simplified model of a very strong, but rapidly decaying bond with the surface, preventing application of the standard tools of statistical mechanics. We show the existence and nonlinear stability of ordered lattice states, as well as disturbance propagation through and chaotic vibrations of these states. We also investigate the dynamics of disordered gas states and show that there is a surprising and robust linear connection between distributions of angular and linear velocity for both lattice and gas states, allowing to define the concept of temperature

    Sub-Doppler resonances in the back-scattered light from random porous media infused with Rb vapor

    Full text link
    We report on the observation of sub-Doppler resonances on the back-scattered light from a random porous glass medium with rubidium vapor filling its interstices. The sub-Doppler spectral lines are the consequence of saturated absorption where the incident laser beam saturates the atomic medium and the back-scattered light probes it. Some specificities of the observed spectra reflect the transient atomic evolution under confinement inside the pores. Simplicity, robustness and potential miniaturization are appealing features of this system as a spectroscopic reference.Comment: 6 pages, 4 figure

    Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold

    Full text link
    The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator (OPO) in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the OPO threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following onset of the soft Goldstone mode

    Signal of Bose condensation in an optical lattice at finite temperature

    Full text link
    We discuss the experimental signal for the Bose condensation of cold atoms in an optical lattice at finite temperature. Instead of using the visibility of the interference pattern via the time-of-flight imaging, we show that the momentum space density profile in the first Brillouin zone, in particular its bimodal distribution, provides an unambiguous signal for the Bose condensation. We confirm this point with detailed calculation of the change in the atomic momentum distribution across the condensation phase transition, taking into account both the global trapping potential and the atomic interaction effects.Comment: 4 pages, 2 figures, replaced with the published versio

    An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons

    Full text link
    We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics, in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and super-sonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.Comment: 5 pages Main + 5 pages Supplementary, 8 figure

    A variational problem on Stiefel manifolds

    Full text link
    In their paper on discrete analogues of some classical systems such as the rigid body and the geodesic flow on an ellipsoid, Moser and Veselov introduced their analysis in the general context of flows on Stiefel manifolds. We consider here a general class of continuous time, quadratic cost, optimal control problems on Stiefel manifolds, which in the extreme dimensions again yield these classical physical geodesic flows. We have already shown that this optimal control setting gives a new symmetric representation of the rigid body flow and in this paper we extend this representation to the geodesic flow on the ellipsoid and the more general Stiefel manifold case. The metric we choose on the Stiefel manifolds is the same as that used in the symmetric representation of the rigid body flow and that used by Moser and Veselov. In the extreme cases of the ellipsoid and the rigid body, the geodesic flows are known to be integrable. We obtain the extremal flows using both variational and optimal control approaches and elucidate the structure of the flows on general Stiefel manifolds.Comment: 30 page

    A subradiant optical mirror formed by a single structured atomic layer

    No full text
    Efficient and versatile interfaces for the interaction of light with matter are an essential cornerstone for quantum science. A fundamentally new avenue of controlling light-matter interactions has been recently proposed based on the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. Here we report on the direct observation of the cooperative subradiant response of a two-dimensional (2d) square array of atoms in an optical lattice. We observe a spectral narrowing of the collective atomic response well below the quantum-limited decay of individual atoms into free space. Through spatially resolved spectroscopic measurements, we show that the array acts as an efficient mirror formed by only a single monolayer of a few hundred atoms. By tuning the atom density in the array and by changing the ordering of the particles, we are able to control the cooperative response of the array and elucidate the interplay of spatial order and dipolar interactions for the collective properties of the ensemble. Bloch oscillations of the atoms out of the array enable us to dynamically control the reflectivity of the atomic mirror. Our work demonstrates efficient optical metamaterial engineering based on structured ensembles of atoms and paves the way towards the controlled many-body physics with light and novel light-matter interfaces at the single quantum level.Comment: 8 pages, 5 figures + 12 pages Supplementary Infomatio

    Geometrically constrained magnetic wall

    Full text link
    The structure and properties of a geometrically constrained magnetic wall in a constriction separating two wider regions are investigated theoretically. They are shown to differconsiderably from those of an unconstrained wall, so that the geometrically constrained magnetic wall truly constitutes a new kind of magnetic wall, besides the well known Bloch and Neel walls. In particular, the width of a constrained wall cann become very small if the characteristic length of the constriction is small, as is actually the case in an atomic point contact. This provides a simple, natural explanation for the large magnetoresistance observed in ferromagnetic atomic point contacts.Comment: RevTeX, 4 pages, 4 eps figures; v2: revised version; v3: ref. adde
    • …
    corecore