6,215 research outputs found

    Superconducting Mg-B films by pulsed laser deposition in an in-situ two-step process using multi-component targets

    Get PDF
    Superconducting thin films have been prepared in a two-step in-situ process, using the Mg-B plasma generated by pulsed laser ablation. The target was composed of a mixture of Mg and MgB2 powders to compensate for the volatility of Mg and therefore to ensure a high Mg content in the film. The films were deposited at temperatures ranging from room temperature to 300 degrees C followed by a low-pressure in-situ annealing procedure. Various substrates have been used and diverse ways to increase the Mg content into the film were applied. The films show a sharp transition in the resistance and have a zero resistance transition temperature of 22-24 K.Comment: 4 pages, 3 figures, submitted to Applied Physics Letter

    Preparation and properties of amorphous MgB2_2/MgO superstructures: A new model disordered superconductor

    Get PDF
    In this paper we introduce a novel method for fabricating MgB2_2/MgO multilayers and demonstrate the potential for using them as a new model for disordered superconductors. In this approach we control the annealing of the MgB2_2 to yield an interesting new class of disordered (amorphous) superconductors with relatively high transition temperatures. The multilayers appear to exhibit quasi-two-dimensional superconductivity with controlled anisotropy. We discuss the properties of the multilayers as the thickness of the components of the bilayers vary.Comment: 7 pages, 8 figure

    Hysteresis phenomenon in deterministic traffic flows

    Full text link
    We study phase transitions of a system of particles on the one-dimensional integer lattice moving with constant acceleration, with a collision law respecting slower particles. This simple deterministic ``particle-hopping'' traffic flow model being a straightforward generalization to the well known Nagel-Schreckenberg model covers also a more recent slow-to-start model as a special case. The model has two distinct ergodic (unmixed) phases with two critical values. When traffic density is below the lowest critical value, the steady state of the model corresponds to the ``free-flowing'' (or ``gaseous'') phase. When the density exceeds the second critical value the model produces large, persistent, well-defined traffic jams, which correspond to the ``jammed'' (or ``liquid'') phase. Between the two critical values each of these phases may take place, which can be interpreted as an ``overcooled gas'' phase when a small perturbation can change drastically gas into liquid. Mathematical analysis is accomplished in part by the exact derivation of the life-time of individual traffic jams for a given configuration of particles.Comment: 22 pages, 6 figures, corrected and improved version, to appear in the Journal of Statistical Physic

    Pyro: A Python-Based Versatile Programming Environment For Teaching Robotics

    Get PDF
    In this article we describe a programming framework called Pyro, which provides a set of abstractions that allows students to write platform-independent robot programs. This project is unique because of its focus on the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the background of the project, its novel abstractions, its library of objects, and the many learning modules that have been created from which curricula for different types of courses can be drawn. Finally, we explore Pyro from the students\u27 perspective in a case study

    Admixtures to d-wave gap symmetry in untwinned YBa2Cu3O7 superconducting films measured by angle-resolved electron tunneling

    Get PDF
    We report on an \textit{ab}-anisotropy of Jc∥b/Jc∥aJ_{c \parallel b}/J_{c \parallel a}% \cong 1.8 and IcRn∥b/IcRn∥a≅1.2I_{c}R_{n \parallel b}/I_{c}R_{n \parallel a}\cong 1.2 in ramp-edge junctions between untwinned YBa2_{2}Cu3_{3}O7_{7} and ss% -wave Nb. For these junctions, the angle θ\theta with the YBa2_{2}Cu3_{3}O7_{7} crystal b-axis is varied as a single parameter. The RnR_{n}A(θ\theta)-dependence presents 2-fold symmetry. The minima in IcRnI_{c}R_{n} at θ≅50∘\theta \cong 50^{\circ} suggest a real s-wave subdominant component and negligible dxyd_{xy}-wave or imaginary s-wave admixtures. The IcRnI_{c}R_{n}(θ\theta)-dependence is well-fitted by 83% dx2−y2d_{x^{2}-y^{2}}-, 15% isotropic ss- and 2% anisotropic s-wave order parameter symmetry, consistent with Δb/Δa≅1.5\Delta_{b}/\Delta_{a} \cong 1.5.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Nonlinear Induction Detection of Electron Spin Resonance

    Full text link
    We present a new approach to the induction detection of electron spin resonance (ESR) signals exploiting the nonlinear properties of a superconducting resonator. Our experiments employ a yttrium barium copper oxide (YBCO) superconducting stripline microwave (MW) resonator integrated with a microbridge. A strong nonlinear response of the resonator is thermally activated in the microbridge when exceeding a threshold in the injected MW power. The responsivity factor characterizing the ESR-induced change in the system's output signal is about 100 times larger when operating the resonator near the instability threshold, compared to the value obtained in the linear regime of operation. Preliminary experimental results, together with a theoretical model of this phenomenon are presented. Under appropriate conditions nonlinear induction detection of ESR can potentially improve upon the current capabilities of conventional linear induction detection ESR
    • …
    corecore