6 research outputs found

    Gliomatosis cerebri type II: two case reports

    Get PDF
    Two types of gliomatosis cerebri exist: Type I and Type II. We report the results of a histological and genetic study of two cases of gliomatosis cerebri Type II, correlating these results with therapy and prognosis. Case presentation Two patients, a 52-year-old man (Patient 1) and a 76-year-old man (Patient 2) with gliomatosis cerebri II were admitted to our institution; they underwent surgical treatment and received radiotherapy and chemotherapy. At the 24-month follow-up, Patient 1 was still alive, while Patient 2 had died. The poor prognosis of Patient 2 was underlined by molecular analysis which showed that the angiogenesis related genes VCAM1 and VEGF were overexpressed, reflecting the high degree of neovascularization. Conclusion Genes involved in drug resistance and metallothioneins were highly expressed in Patient 2 and this, associated with unmethylated O6-methylguanine methyltransferase, can explain the lack of response to chemotherapy

    Role of PhaC Type I and Type II Enzymes during PHA Biosynthesis

    No full text
    PHA synthases (PhaC) are grouped into four classes based on the kinetics and mechanisms of reaction. The grouping of PhaC enzymes into four classes is dependent on substrate specificity, according to the preference in forming short-chain-length (scl) or medium-chain-length (mcl) polymers: Class I, Class III and Class IV produce scl-PHAs depending on propionate, butyrate, valerate and hexanoate precursors, while Class II PhaC synthesize mcl-PHAs based on the alkane (C6 to C14) precursors. PHA synthases of Class I, in particular PhaCCs from Chromobacterium USM2 and PhaCCn/RePhaC1 from Cupriavidus necator/Ralstonia eutropha, have been analysed and the crystal structures of the C-domains have been determined. PhaCCn/RePhaC1 was also studied by X-ray absorption fine-structure (XAFS) analysis. Models have been proposed for dimerization, catalysis mechanism, substrate recognition and affinity, product formation, and product egress route. The assays based on amino acid substitution by mutagenesis have been useful to validate the hypothesis on the role of amino acids in catalysis and in accommodation of bulky substrates, and for the synthesis of PHB copolymers and medium-chain-length PHA polymers with optimized chemical properties

    miR-15b and miR-21 as Circulating Biomarkers for Diagnosis of Glioma

    No full text
    Malignant gliomas are lethal primary intracranial tumors. To date, little information on the role of deregulated genes in gliomas have been identified. As the involvement of miRNAs in the carcinogenesis is well known, we carried out a pilot study to identify, as potential biomarkers, differentially expressed microRNAs in blood samples of patients affected by glioma. We studied the miRNAs' expression, by means of microarray and Real-Time PCR, in 30 blood samples from glioma patients and in 82 blood samples of patients suffering from: (a) various neurological disorders (n=30), (b) primary B-lymphoma of the Central Nervous System (PCNSL, n=36) and (c) secondary brain metastases (n=16). By quantitative real time reverse-transcriptase polymerase chain reaction (qRT-PCR), we identified significantly increased levels of two candidate biomarkers, miR-15b and miR-21, in blood of patients affected by gliomas. ROC analysis of miR-15b biomarker levels allowed to differentiate patients with tumour from patients without glioma. Furthermore, combined expression analyses of miR15b and miR-21 distinguished between patients with and without glioma (90% sensitivity and 100% specificity). In addition, a decrement in the expression levels of miR-16 characterized glioblastomas compared to low grade and anaplastic gliomas. In conclusion, this pilot study suggest that it's possible to identify the disease state by meaning miR-15b and miR-21 markers in blood, while miR-16 can be used to distinguish glioblastoma from other grade gliomas. They can potentially be used as biomarkers for non-invasive diagnosis of gliomas; further studies are mandatory to confirm our preliminary findings

    Apolipoprotein B, Residual Cardiovascular Risk After Acute Coronary Syndrome, and Effects of Alirocumab.

    No full text
    Background: Apolipoprotein B (apoB) provides an integrated measure of atherogenic risk. Whether apoB levels and apoB lowering hold incremental predictive information on residual risk after acute coronary syndrome beyond that provided by low-density lipoprotein cholesterol is uncertain. Methods: The ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) compared the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin therapy. Primary outcome was major adverse cardiovascular events (MACE; coronary heart disease death, nonfatal myocardial infarction, fatal/nonfatal ischemic stroke, hospitalization for unstable angina). Associations between baseline apoB or apoB at 4 months and MACE were assessed in adjusted Cox proportional hazards and propensity score–matched models. Results: Median follow-up was 2.8 years. In proportional hazards analysis in the placebo group, MACE incidence increased across increasing baseline apoB strata (3.2 [95% CI, 2.9–3.6], 4.0 [95% CI, 3.6–4.5], and 5.5 [95% CI, 5.0–6.1] events per 100 patient-years in strata 35–<50, and ≀35 mg/dL, respectively). Compared with propensity score–matched patients from the placebo group, treatment hazard ratios for alirocumab also decreased monotonically across achieved apoB strata. Achieved apoB was predictive of MACE after adjustment for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol but not vice versa. Conclusions: In patients with recent acute coronary syndrome and elevated atherogenic lipoproteins, MACE increased across baseline apoB strata. Alirocumab reduced MACE across all strata of baseline apoB, with larger absolute reductions in patients with higher baseline levels. Lower achieved apoB was associated with lower risk of MACE, even after accounting for achieved low-density lipoprotein cholesterol or non–high-density lipoprotein cholesterol, indicating that apoB provides incremental information. Achievement of apoB levels as low as ≀35 mg/dL may reduce lipoprotein-attributable residual risk after acute coronary syndrome. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT01663402.gov; Unique identifier: NCT01663402.URL: https://www
    corecore