22 research outputs found

    In-plane structure and ordering at liquid sodium surfaces and interfaces from ab initio molecular dynamics

    Full text link
    Atoms at liquid metal surfaces are known to form layers parallel to the surface. We analyze the two-dimensional arrangement of atoms within such layers at the surface of liquid sodium, using ab initio molecular dynamics (MD) simulations based on density functional theory. Nearest neighbor distributions at the surface indicate mostly 5-fold coordination, though there are noticeable fractions of 4-fold and 6-fold coordinated atoms. Bond angle distributions suggest a movement toward the angles corresponding to a six-fold coordinated hexagonal arrangement of the atoms as the temperature is decreased towards the solidification point. We rationalize these results with a distorted hexagonal order at the surface, showing a mixture of regions of five and six-fold coordination. The liquid surface results are compared with classical MD simulations of the liquid surface, with similar effects appearing, and with ab initio MD simulations for a model solid-liquid interface, where a pronounced shift towards hexagonal ordering is observed as the temperature is lowered

    Atomic layering at the liquid silicon surface: a first- principles simulation

    Full text link
    We simulate the liquid silicon surface with first-principles molecular dynamics in a slab geometry. We find that the atom-density profile presents a pronounced layering, similar to those observed in low-temperature liquid metals like Ga and Hg. The depth-dependent pair correlation function shows that the effect originates from directional bonding of Si atoms at the surface, and propagates into the bulk. The layering has no major effects in the electronic and dynamical properties of the system, that are very similar to those of bulk liquid Si. To our knowledge, this is the first study of a liquid surface by first-principles molecular dynamics.Comment: 4 pages, 4 figures, submitted to PR

    Density Distribution in the Liquid Hg-Sapphire Interface

    Full text link
    We present the results of a computer simulation study of the liquid density distribution normal to the interface between liquid Hg and the reconstructed (0001) face of sapphire. The simulations are based on an extension of the self-consistent quantum Monte Carlo scheme previously used to study the structure of the liquid metal-vapor interface. The calculated density distribution is in very good agreement with that inferred from the recent experimental data of Tamam et al (J. Phys. Chem. Lett. 1, 1041-1045 (2010)). We conclude that, to account for the difference in structure between the liquid Hg-vapor and liquid-Hg-reconstructed (0001) Al2O3 interfaces, it is not necessary assume there is charge transfer from the Hg to the Al2O3. Rather, the available experimental data are adequately reproduced when the van der Waals interactions of the Al and O atoms with Hg atoms and the exclusion of electron density from Al2O3 via repulsion of the electrons from the closed shells of the ions in the solid are accounted for.Comment: 26 pages, 11 figure

    Economics of invasive species policy and management

    Get PDF
    corecore