39 research outputs found

    HDL-Mediated Cholesterol Efflux and Plasma Loading Capacities Are Altered in Subjects with Metabolically- but Not Genetically Driven Non-Alcoholic Fatty Liver Disease (NAFLD)

    Get PDF
    Background. Non-alcoholic fatty liver disease (NAFLD) increases the risk of atherosclerosis but this risk may dier between metabolically- vs. genetically-driven NAFLD. High-density lipoprotein (HDL)-mediated cholesterol efflux (CEC) and plasma loading capacity (CLC) are key factors in atherogenesis. Aims. To test whether CEC and CLC dier between metabolically- vs. genetically-determined NAFLD. Methods: CEC and CLC were measured in 19 patients with metabolic NAFLD and wild-type PNPLA3 genotype (Group M), 10 patients with genetic NAFLD carrying M148M PNPLA3 genotype (Group G), and 10 controls PNPLA3 wild-types and without NAFLD. CEC and CLC were measured ex vivo by isotopic and fluorimetric techniques using cellular models. Results: Compared with Group G, Group M showed reduced total CEC (18.6%; p < 0.001) as well as that mediated by cholesterol transporters (25.3% ABCA1; 16.3% ABCG1; 14.8% aqueous dffusion; all p < 0.04). No difference in CEC was found between Group G and controls. The presence of metabolic syndrome further impaired ABCG1-mediated CEC in Group M. Group M had higher plasma-induced CLC than Group G and controls (p < 0.001). Conclusions: Metabolically-, but not genetically-, driven NAFLD associates with dysfunctional HDL-meditated CEC and abnormal CLC. These data suggest that the mechanisms of anti-atherogenic protection in metabolic NAFLD are impaired

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment

    No full text
    International audiencePurpose of Review Familial chylomicronemia syndrome (FCS) is a rare recessive genetic disorder often underdiagnosed with potentially severe clinical consequences. In this review, we describe the clinical and biological characteristics of the disease together with its main complication, i.e., acute pancreatitis. We focused the paper on new diagnostic tools, progress in understanding the role of two key proteins (apolipoprotein CIII (apo CIII) and angiopoietin-like3 (ANGPTL-3)), and new therapeutic options. Recent Findings Recently, a new diagnostic tool has been proposed by European experts to help identify these patients. This tool with two recently identified parameters (low LDL and low body mass index) can help identify patients who should be genetically tested or who may have the disease when genetic testing is not available. FCS is caused by homozygous or compound heterozygous mutations of lipoprotein lipase, apolipoprotein C-II, apolipoprotein A-V, glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1, and lipase maturation factor. Two proteins have been identified as important player in the metabolism of triglyceride-rich lipoprotein and its regulation. These two proteins are therapeutic target. Antisense oligonucleotide targeting apo CIII has been shown to significantly decrease triglyceride levels even in FCS and is the first available treatment for these patients. Further development might identify new compounds with reduced risk to develop severe thrombocytopenia. ANGPTL-3 inhibitors have not yet been tested in FCS patients but exert significant hypotriglyceridemic effect in the more frequent and less severe polygenic forms. Beyond these two new targets, microsomal triglyceride transfer protein (MTTP) inhibitors could also be part of the armamentarium, if on-going trials confirm their efficacy. New clinical tools and simple criteria can help select patients with possible FCS and identify patients who should have a genetic testing. Identifying patients with FCS is a major issue since these patients have a high risk to suffer severe episodes of acute pancreatitis and may now benefit from new therapeutic options including antisense oligonucleotide targeting apo CIII

    Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible?

    No full text
    Hyperlipidemia is a powerful risk factor for coronary heart disease (CHD). It has been known for a long time that lipid-lowering drugs significantly reduce morbidity from CHD, thus proving a causal role for cholesterol in coronary events. Conversely, the relationship between low-density lipoprotein cholesterol (LDL-C) levels and stroke has been less clear and debated for many years. Recent data conclusively demonstrate not only the inverse epidemiological relationship of blood LDL-C with stroke, but also the efficacy of different strategies to attain cholesterol-lowering on stroke. They also dissipate lingering doubts about the possibility that lipid-lowering is linked to an increase in hemorrhagic stroke. However, despite current international lipid guidelines now strongly recommend aggressive lipid-lowering therapy in patients with atherosclerotic cardiovascular disease, including CHD and cerebrovascular disease (CeVD), secondary prevention patients are often undertreated with lipid-lowering therapies in routine clinical practice. This review highlights that patients with CHD and concomitant CeVD do not receive aggressive lipid-lowering therapy despite being at very high risk and with clear evidence of benefit from lowering LDL-C levels below current targets

    The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases?

    No full text
    Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders

    The Interplay between Angiopoietin-Like Proteins and Adipose Tissue: Another Piece of the Relationship between Adiposopathy and Cardiometabolic Diseases?

    No full text
    Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders

    Metabolic Syndrome but Not Fatty Liver-Associated Genetic Variants Correlates with Glomerular Renal Function Decline in Patients with Non-Alcoholic Fatty Liver Disease

    No full text
    The association between non-alcoholic fatty liver disease (NAFLD) and chronic kidney disease (CKD) has been extensively demonstrated. Recent studies have focused attention on the role of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism in the association between NAFLD and CKD in non-metabolic adults and children, but the genetic impact on NAFLD-CKD association is still a matter of debate. The aim of the study was to investigate the impact of PNPLA3, transmembrane 6 superfamily member 2 (TM6SF2), membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and glucokinase regulatory protein (GCKR) gene variants rather than metabolic syndrome features on renal function in a large population of NAFLD patients. The present study is a post hoc analysis of the Plinio Study (ClinicalTrials.gov: NCT04036357). PNPLA3, TM6SF2, MBOAT7 and GCKR genes were analyzed by using real-time PCR with TaqMan probes. Glomerular filtration rate (GFR) was estimated with CKD-EPI. We analyzed 538 NAFLD; 47.2% had GFR 2 while 5.9% had GFR 2. The distribution of genotypes was superimposable according to GFR cut-offs. Results from the multivariable regression model did not show any correlation between genotypes and renal function. Conversely, metabolic syndrome was highly associated with GFR 2 (odds ratio (OR): 1.58 [1.10–2.28]) and arterial hypertension with GFR 2 (OR: 1.50 [1.05–2.14]). In conclusion, the association between NAFLD and CKD might be related to the shared metabolic risk factors rather than the genetic NAFLD background

    Nonalcoholic Fatty Liver Disease (NAFLD), But not Its Susceptibility Gene Variants, Influences the Decrease of Kidney Function in Overweight/Obese Children

    No full text
    Nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of kidney disease in adults and children. However, it is uncertain whether this association is influenced by major NAFLD susceptibility genes. In a sample of 230 overweight/obese children, 105 with NAFLD (hepatic fat fraction ≥5% by magnetic resonance imaging) and 125 without NAFLD, rs738409 in PNPLA3, rs58542926 in TM6SF2, rs1260326 in GCKR, and rs641738 in MBOAT7 were genotyped. Abnormal kidney function was defined as estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2 and/or the presence of microalbuminuria (24 h urinary albumin excretion between 30 and 300 mg). In comparison with children without NAFLD, those with NAFLD showed increased prevalence of reduced eGFR (13.3% vs. 1.6%; p < 0.001) and microalbuminuria (8.6% vs. 3.4%, p = 0.025). TM6SF2, GCKR, and MBOAT7 risk alleles did not show any impact on kidney function, while the PNPLA3 G allele was associated with lower eGFR, but only in children with NAFLD (p = 0.003). After adjustment for confounders, NAFLD (OR, 4.7; 95% CI, 1.5–14.8; padj = 0.007), but not the PNPLA3 gene variant, emerged as the main independent predictor of renal dysfunction. Overall, our findings suggest that NAFLD remains the main determinant of decline in kidney function in overweight/obese children, while the PNPLA3 rs738409 prosteatogenic variant has a small impact, if any

    Efficacy of Long-Term Treatment of Autosomal Recessive Hypercholesterolemia With Lomitapide: A Subanalysis of the Pan-European Lomitapide Study

    Get PDF
    Background and aim: Autosomal recessive hypercholesterolemia (ARH) is a rare autosomal recessive disorder of low-density lipoprotein (LDL) metabolism caused by pathogenic variants in the LDLRAP1 gene. Like homozygous familial hypercholesterolemia, ARH is resistant to conventional LDL-lowering medications and causes a high risk of atherosclerotic cardiovascular diseases (ASCVDs) and aortic valve stenosis. Lomitapide is emerging as an efficacious therapy in classical HoFH, but few data are available for ARH. Results: This is a subanalysis carried out on nine ARH patients included in the Pan-European Lomitapide Study. The age at starting lomitapide was 46 (interquartile range (IQR), 39.0–65.5) years, with a median treatment duration of 31.0 (IQR 14.0–40.5) months. At baseline, four (44.4%) patients had hypertension, one (11.1%) had diabetes mellitus, two (22.2%) were active smokers, and five (55.5%) reported ASCVD. The baseline LDL-C was 257.0 (IQR, 165.3–309.2) mg/dL. All patients were on statins plus ezetimibe, three were receiving Lipoprotein apheresis (LA), and one was also receiving proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i). The addition of lomitapide (mean dose, 10 mg) resulted in the achievement of a median on-treatment LDL-C of 101.7 mg/dL (IQR, 71.3–138.3; 60.4% reduction from baseline), with a best LDL-C value of 68.0 mg/dL (IQR, 43.7–86.7; 73.5% reduction from baseline). During follow-up, one patient stopped both PCSK9i and LA. Recurrence of ASCVD events was reported in one patient. The median on-treatment aspartate transaminase and alanine transaminase values were 31.1 (IQR, 22.6–48.3) U/L and 31.1 (IQR, 27.2–53.8) U/L, respectively. Among six ARH patients with available fibroscan examination, liver stiffness values recorded at the last visit were within the normal range (median, 4.7 KPa; IQR, 3.6–5.3 KPa). Conclusion: Lomitapide is effective and safe in ARH therapy as well as in classical HoFH
    corecore