37 research outputs found

    Coordinating Environmental Genomics and Geochemistry Reveals Metabolic Transitions in a Hot Spring Ecosystem

    Get PDF
    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability

    Current methods in structural proteomics and its applications in biological sciences

    Full text link

    Picornalike Viruses of Insects

    No full text

    A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification

    No full text
    Lamiaceae, the sixth largest angiosperm family, contains more than 7000 species distributed all over the world. However, although considerable progress has been made in the last two decades, its phylogenetic backbone has never been well resolved. In the present study, a large-scale phylogenetic reconstruction of Lamiaceae using chloroplast sequences was carried out with the most comprehensive sampling of the family to date (288 species in 191 genera, representing approximately 78% of the genera of Lamiaceae). Twelve strongly supported primary clades were inferred, which form the phylogenetic backbone of Lamiaceae. Six of the primary clades correspond to the current recognized subfamilies Ajugoideae, Lamioideae, Nepetoideae, Prostantheroideae, Scutellarioideae, and Symphorematoideae, and one corresponds to a portion of Viticoideae. The other five clades comprise: 1) Acrymia and Cymaria; 2) Hymenopyramis, Petraeovitex, Peronema, and Garrettia; 3) Premna, Gmelina, and Cornutia; 4) Callicarpa; and 5) Tectona. Based on these results, three new subfamilies—Cymarioideae, Peronematoideae, and Premnoideae—are described, and the compositions of other subfamilies are updated based on new findings from the last decade. Furthermore, our analyses revealed five strongly supported, more inclusive clades that contain subfamilies, and we give them phylogenetically defined, unranked names: Cymalamiina, Scutelamiina, Perolamiina, Viticisymphorina, and Calliprostantherina
    corecore