278 research outputs found

    Twisted SUSY Invariant Formulation of Chern-Simons Gauge Theory on a Lattice

    Get PDF
    We propose a twisted SUSY invariant formulation of Chern-Simons theory on a Euclidean three dimensional lattice. The SUSY algebra to be realized on the lattice is the N=4 D=3 twisted algebra that was recently proposed by D'Adda et al.. In order to keep the manifest anti-hermiticity of the action, we introduce oppositely oriented supercharges. Accordingly, the naive continuum limit of the action formally corresponds to the Landau gauge fixed version of Chern-Simons theory with complex gauge group which was originally proposed by Witten. We also show that the resulting action consists of parity even and odd parts with different coefficients.Comment: 22 pages, 5 figures; v2,v3 added references, v4 added two paragraphs and one figure in the summar

    Species Doublers as Super Multiplets in Lattice Supersymmetry: Exact Supersymmetry with Interactions for D=1 N=2

    Full text link
    We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional N=2 model with interactions has exact Lie algebraic supersymmetry on the lattice for all super charges. In coordinate representation the finite difference operator is made to satisfy Leibnitz rule by introducing a non local product, the ``star'' product, and the exact lattice supersymmetry is realized. The standard momentum conservation is replaced on the lattice by the conservation of the sine of the momentum, which plays a crucial role in the formulation. Half lattice spacing structure is essential for the one dimensional model and the lattice supersymmetry transformation can be identified as a half lattice spacing translation combined with alternating sign structure. Invariance under finite translations and locality in the continuum limit are explicitly investigated and shown to be recovered. Supersymmetric Ward identities are shown to be satisfied at one loop level. Lie algebraic lattice supersymmetry algebra of this model suggests a close connection with Hopf algebraic exactness of the link approach formulation of lattice supersymmetry.Comment: 34 pages, 2 figure

    Formulation of Supersymmetry on a Lattice as a Representation of a Deformed Superalgebra

    Full text link
    The lattice superalgebra of the link approach is shown to satisfy a Hopf algebraic supersymmetry where the difference operator is introduced as a momentum operator. The breakdown of the Leibniz rule for the lattice difference operator is accommodated as a coproduct operation of (quasi)triangular Hopf algebra and the associated field theory is consistently defined as a braided quantum field theory. Algebraic formulation of path integral is perturbatively defined and Ward-Takahashi identity can be derived on the lattice. The claimed inconsistency of the link approach leading to the ordering ambiguity for a product of fields is solved by introducing an almost trivial braiding structure corresponding to the triangular structure of the Hopf algebraic superalgebra. This could be seen as a generalization of spin and statistics relation on the lattice. From the consistency of this braiding structure of fields a grading nature for the momentum operator is required.Comment: 45 page

    Lattice formulation of two-dimensional N=(2,2) super Yang-Mills with SU(N) gauge group

    Full text link
    We propose a lattice model for two-dimensional SU(N) N=(2,2) super Yang-Mills model. We start from the CKKU model for this system, which is valid only for U(N) gauge group. We give a reduction of U(1) part keeping a part of supersymmetry. In order to suppress artifact vacua, we use an admissibility condition.Comment: 16 pages, 3 figures; v2: typo crrected; v3: 18 pages, a version to appear in JHE

    Gauge symmetry enhancement in Hamiltonian formalism

    Full text link
    We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model coupled with U(2) Chern-Simons term, which contains a free parameter governing explicit symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase space suitable for the symmetry enhancement, we explicitly perform the Dirac analysis of our model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.Comment: 8 pages, typos correcte

    On the BPS Spectrum at the Root of the Higgs Branch

    Full text link
    We study the BPS spectrum and walls of marginal stability of the N=2\mathcal{N}=2 supersymmetric theory in four dimensions with gauge group SU(n) and nNf<2nn\le N_{f}<2n fundamental flavours at the root of the Higgs branch. The strong-coupling spectrum of this theory was conjectured in hep-th/9902134 to coincide with that of the two-dimensional supersymmetric CP2nNf1\mathbb{CP}^{2n-N_{f}-1} sigma model. Using the Kontsevich--Soibelman wall-crossing formula, we start with the conjectured strong-coupling spectrum and extrapolate it to all other regions of the moduli space. In the weak-coupling regime, our results precisely agree with the semiclassical analysis of hep-th/9902134: in addition to the usual dyons, quarks, and WW bosons, if the complex masses obey a particular inequality, the resulting weak-coupling spectrum includes a tower of bound states consisting of a dyon and one or more quarks. In the special case of Zn\mathbb{Z}_{n}-symmetric masses, there are bound states with one quark for odd nn and no bound states for even nn.Comment: 11 pages, 4 figure

    The self-dual gauge fields and the domain wall fermion zero modes

    Full text link
    A new type of gauge fixing of the Coulomb gauge domain wall fermion system that reduces the fluctuation of the effective running coupling and the effective mass of arbitrary momentum direction including the region outside the cylinder cut region is proposed and tested in the 163×32×1616^3\times 32\times 16 gauge configurations of RBC/UKQCD collaboration. The running coupling at the lowest momentum point does not show infrared suppression and compatible with the experimental data extracted from the JLab collaboration. The source of the fluctuation of the effective mass near momentum p=p=0.6GeV region is expected to be due to the domain wall fermion zero modes.Comment: 12 pages 2 figures, extended arguments and references adde

    Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry

    Full text link
    We reexamine the issue of the soliton mass in two-dimensional models with N =1 supersymmetry. The superalgebra has a central extension, and at the classical level the soliton solution preserves 1/2 of supersymmetry which is equivalent to BPS saturation. We prove that the property of BPS saturation, i.e. the equality of the soliton mass to the central charge, remains intact at the quantum level in all orders of the weak coupling expansion. Our key finding is an anomaly in the expression for the central charge. The classical central charge, equal to the jump of the superpotential, is amended by an anomalous term proportional to the second derivative of the superpotential. The anomaly is established by various methods in explicit one-loop calculations. We argue that this one-loop result is not affected by higher orders. We discuss in detail how the impact of the boundary conditions can be untangled from the soliton mass calculation. In particular, the soliton profile and the energy distribution are found at one loop. A "supersymmetry" in the soliton mass calculations in the non-supersymmetric models is observed.Comment: 50 pages, LaTex, 2 figures. The version exactly matching that published in Phys.Rev. D. The most essential addition is a footnote, clarifying multiplet shortenin

    Gauge Symmetry Enhancement and Radiatively Induced Mass in the Large N Nonlinear Sigma Model

    Full text link
    We consider a hybrid of nonlinear sigma models in which two complex projective spaces are coupled with each other under a duality. We study the large N effective action in 1+1 dimensions. We find that some of the dynamically generated gauge bosons acquire radiatively induced masses which, however, vanish along the self-dual points where the two couplings characterizing each complex projective space coincide. These points correspond to the target space of the Grassmann manifold along which the gauge symmetry is enhanced, and the theory favors the non-Abelian ultraviolet fixed point.Comment: 11 pages, REVTEX, typos are corrected, version to appear in Phys. Rev.

    On the sign problem in 2D lattice super Yang--Mills

    Full text link
    In recent years a new class of supersymmetric lattice theories have been proposed which retain one or more exact supersymmetries for non-zero lattice spacing. Recently there has been some controversy in the literature concerning whether these theories suffer from a sign problem. In this paper we address this issue by conducting simulations of the N=(2, 2) and N=(8, 8) supersymmetric Yang--Mills theories in two dimensions for the U(N) theories with N=2,3,4, using the new twisted lattice formulations. Our results provide evidence that these theories do not suffer from a sign problem in the continuum limit. These results thus boost confidence that the new lattice formulations can be used successfully to explore non-perturbative aspects of four-dimensional N=4 supersymmetric Yang--Mills theory.Comment: 22 pages, 12 figure
    corecore