5 research outputs found
Recommended from our members
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/ mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety âMode of Actionâ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Recommended from our members
Evaluation of Protein Levels of the Receptor Tyrosine Kinase ErbB3 in Serum
The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases (RTK) consists of four members: EGFR1/ErbB1/HER1, ErbB2/HER2, ErbB3/HER3, and HER4/ErbB4. Signaling through these receptors regulates many key cellular activities, such as cell division, migration, adhesion, differentiation, and apoptosis. The ErbB family has been shown to be overexpressed in different types of cancers and is a target of several inhibitors already in clinical trials. ErbB3 lacks a functional tyrosine kinase domain and therefore has not been as extensively studied as the other members of this family, but its importance in activating downstream pathways, such as the PI3K/Akt pathway, makes this RTK a worthy investigation target, especially in urothelial carcinoma where the PI3K/Akt pathway is vital for progression. In recent times, ErbB3 overexpression has been linked to drug resistance and progression of various diseases, especially cancer. ErbB3 levels in the serum were shown in many cases to be reflective of its role in disease progression, and therefore detection of serum ErbB3 levels during treatment may be of importance.Here we describe two methods for detecting ErbB3 protein in serum from patients who have undergone a clinical trial, utilizing two well-established methods in molecular biology-western blotting and ELISA, focusing on sample preparation and troubleshooting
Recommended from our members
Androgen receptor transcriptional activity is required for heregulin-1ÎČâmediated nuclear localization of the HER3/ErbB3 receptor tyrosine kinase
Prostate cancer is initially regulated by the androgen receptor (AR), a ligand-activated, transcription factor, and is in a hormone-dependent state (hormone-sensitive prostate cancer (HSPC)), but eventually becomes androgen-refractory (castration-resistant prostate cancer (CRPC)) because of mechanisms that bypass the AR, including by activation of ErbB3, a member of the epidermal growth factor receptor family. ErbB3 is synthesized in the cytoplasm and transported to the plasma membrane for ligand binding and dimerization, where it regulates downstream signaling, but nuclear forms are reported. Here, we demonstrate in prostatectomy samples that ErbB3 nuclear localization is observed in malignant, but not benign prostate, and that cytoplasmic (but not nuclear) ErbB3 correlated positively with AR expression but negatively with AR transcriptional activity. In support of the latter, androgen depletion upregulated cytoplasmic, but not nuclear ErbB3, while in vivo studies showed that castration suppressed ErbB3 nuclear localization in HSPC, but not CRPC tumors. In vitro treatment with the ErbB3 ligand heregulin-1ÎČ (HRG) induced ErbB3 nuclear localization, which was androgen-regulated in HSPC but not in CRPC. In turn, HRG upregulated AR transcriptional activity in CRPC but not in HSPC cells. Positive correlation between ErbB3 and AR expression was demonstrated in AR-null PC-3 cells where stable transfection of AR restored HRG-induced ErbB3 nuclear transport, while AR knockdown in LNCaP reduced cytoplasmic ErbB3. Mutations of ErbB3's kinase domain did not affect its localization but was responsible for cell viability in CRPC cells. Taken together, we conclude that AR expression regulated ErbB3 expression, its transcriptional activity suppressed ErbB3 nuclear translocation, and HRG binding to ErbB3 promoted it
Recommended from our members
IGFBP3 promotes resistance to Olaparib via modulating EGFR signaling in advanced prostate cancer
Olaparib is a pioneering PARP inhibitor (PARPi) approved for treating castration-resistant prostate cancer (CRPC) tumors harboring DNA repair defects, but clinical resistance has been documented. To study acquired resistance, we developed Olaparib-resistant (OlapR) cell lines through chronic Olaparib treatment of LNCaP and C4-2B cell lines. Here, we found that IGFBP3 is highly expressed in acquired (OlapR) and intrinsic (Rv1) models of Olaparib resistance. We show that IGFBP3 expression promotes Olaparib resistance by enhancing DNA repair capacity through activation of EGFR and DNA-PKcs. IGFBP3 depletion enhances efficacy of Olaparib by promoting DNA damage accumulation and subsequently, cell death in resistant models. Mechanistically, we show that silencing IGFBP3 or EGFR expression reduces cell viability and resensitizes OlapR cells to Olaparib treatment. Inhibition of EGFR by Gefitinib suppressed growth of OlapR cells and improved Olaparib sensitivity, thereby phenocopying IGFBP3 inhibition. Collectively, our results highlight IGFBP3 and EGFR as critical mediators of Olaparib resistance