2,800 research outputs found

    Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    Full text link
    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform vs. non-uniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a new representation of the controlled qubit evolution, where the resulting decoherence behaviour is directly expressed in terms of the free evolution. Simple analytical expressions are given to approximate the long- and short- term coherence behaviour for both ohmic and supra-ohmic environments. We focus on systems with physical constraints on achievable time delays, with emphasis on pure dephasing of excitonic qubits in quantum dots. Our analysis shows that little advantage of high-level decoupling schemes based on concatenated or optimal design is to be expected if operational constraints prevent pulses to be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic echo protocols can offer significantly improved coherence preservation in realistic parameter regimes.Comment: 13 figures,1 tabl

    The Timing of Nine Globular Cluster Pulsars

    Full text link
    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with past authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called "black widow" class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in globular clusters. We also have measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M_sun) and companion mass (1.2064(20) M_sun), from which we derive the orbital inclination [sin(i) = 0.9956(14)] and the pulsar mass (1.3655(21) M_sun), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.Comment: Published in ApJ; 33 pages, 5 figures, 7 table

    GMRT Discovery of A Millisecond Pulsar in a Very Eccentric Binary System

    Get PDF
    We report the discovery of the binary millisecond pulsar J0514-4002A, which is the first known pulsar in the globular cluster NGC 1851 and the first pulsar discovered using the Giant Metrewave Radio Telescope (GMRT). The pulsar has a rotational period of 4.99 ms, an orbital period of 18.8 days, and the most eccentric pulsar orbit yet measured (e = 0.89). The companion has a minimum mass of 0.9 M_sun and its nature is presently unclear. After accreting matter from a low-mass companion star which spun it up to a (few) millisecond spin period, the pulsar eventually exchanged the low-mass star for its more massive present companion. This is exactly the same process that could form a system containing a millisecond pulsar and a black hole; the discovery of NGC 1851A demonstrates that such systems might exist in the Universe, provided that stellar mass black holes exist in globular clusters.Comment: 12 pages (referee format), 3 figures, accepted for publication in Astrophysical Journal Letter

    Massive Cosmologies

    Full text link
    We explore the cosmological solutions of a recently proposed extension of General Relativity with a Lorentz-invariant mass term. We show that the same constraint that removes the Boulware-Deser ghost in this theory also prohibits the existence of homogeneous and isotropic cosmological solutions. Nevertheless, within domains of the size of inverse graviton mass we find approximately homogeneous and isotropic solutions that can well describe the past and present of the Universe. At energy densities above a certain crossover value, these solutions approximate the standard FRW evolution with great accuracy. As the Universe evolves and density drops below the crossover value the inhomogeneities become more and more pronounced. In the low density regime each domain of the size of the inverse graviton mass has essentially non-FRW cosmology. This scenario imposes an upper bound on the graviton mass, which we roughly estimate to be an order of magnitude below the present-day value of the Hubble parameter. The bound becomes especially restrictive if one utilizes an exact self-accelerated solution that this theory offers. Although the above are robust predictions of massive gravity with an explicit mass term, we point out that if the mass parameter emerges from some additional scalar field condensation, the constraint no longer forbids the homogeneous and isotropic cosmologies. In the latter case, there will exist an extra light scalar field at cosmological scales, which is screened by the Vainshtein mechanism at shorter distances.Comment: 21 page

    Potential distribution in deformed ZnO nanowires

    Get PDF
    AbstractThe potential distribution in a deformed ZnO nanowire relies upon its piezoelectric and semiconductive properties. Here we systematically investigate the influence of different parameters on the equilibrium potential distribution. In particular we calculate the electric potential distribution when thermodynamic equilibrium among free charge carriers is achieved for nanowires under different doping concentrations (n or p type), different applied forces, and different geometric configurations. We show that doping concentration is the parameter that mostly affects the magnitude and distribution of the piezoelectric potential

    Equilibrium properties of highly asymmetric star-polymer mixtures

    Full text link
    We employ effective interaction potentials to study the equilibrium structure and phase behavior of highly asymmetric mixtures of star polymers. We consider in particular the influence of the addition of a component with a small number of arms and a small size on a concentrated solution of large stars with a high functionality. By employing liquid integral equation theories we examine the evolution of the correlation functions of the big stars upon addition of the small ones, finding a loss of structure that can be attributed to a weakening of the repulsions between the large stars due to the presence of the small ones. We analyze this phenomenon be means of a generalized depletion mechanism which is supported by computer simulations. By applying thermodynamic perturbation theory we draw the phase diagram of the asymmetric mixture, finding that the addition of small stars melts the crystal formed by the big ones. A systematic comparison between the two- and effective one-component descriptions of the mixture that corroborates the reliability of the generalized depletion picture is also carried out.Comment: 26 pages, 9 figures, submitted to Phys. Rev.

    Detection of ionized gas in the globular cluster 47 Tucanae

    Get PDF
    We report the detection of ionized intracluster gas in the globular cluster 47 Tucanae. Pulsars in this cluster with a negative period derivative, which must lie in the distant half of the cluster, have significantly higher measured integrated electron column densities than the pulsars with a positive period derivative. We derive the plasma density within the central few pc of the cluster using two different methods which yield consistent values. Our best estimate of n_e = (0.067+-0.015)/cm^3 is about 100 times the free electron density of the ISM in the vicinity of 47 Tucanae, and the ionized gas is probably the dominant component of the intracluster medium.Comment: 5 pages, 3 included figures, accepted for publication by ApJ Letter

    Generation of Tunable THz Pulses

    Get PDF

    Single-spin polaron memory effect

    Get PDF
    The single-spin memory effect is considered within a minimal polaron model describing a single-level quantum dot interacting with a vibron and weakly coupled to ferromagnetic leads. We show that in the case of strong electron-vibron and Coulomb interactions the rate of spontaneous quantum switching between two spin states is suppressed at zero bias voltage, but can be tuned through a wide range of finite switching timescales upon changing the bias. We further find that such junctions exhibit hysteretic behavior enabling controlled switching of a spin state. Spin lifetime, current and spin polarization are calculated as a function of the bias voltage by the master equation method. We also propose to use a third tunneling contact to control and readout the spin state.Comment: LaTeX, 4 pages, 6 figures, submitte
    • …
    corecore